
USING THE CORRBIN PACKAGE FOR NONPARAMETRIC ANALYSIS OF
CORRELATED BINARY DATA

ANIKO SZABO

The CorrBin package focuses on non-parametric methods for exchangeable correlated binary data with varying
cluster sizes. Exchangeability implies that the order of responses within a cluster does not matter, only the total
number of responses; the package uses the clustersize/ number of responses combination as input. Currently only
one categorical cluster-level predictor, treatment group, is allowed. Many of the functions are geared toward testing
trend, so treatment groups are usually treated as ordered categories.
> library(CorrBin)

> library(lattice)

1. Data input

All the analysis functions in the package work on CBData objects, so we start by setting up the data in the format
needed for analysis. The Shell toxicology data set is available in the CBData format in the package, however we
will load it from a text file using the read.CBData function to show more typical usage. The “ShellTox.txt” file
contains four space-delimited columns. The first column contains an integer 1 – 4 giving the treatment group, the
second column gives the size of the cluster, the third the number of responses in the cluster, and the last gives the
number of times the given combination occured in the data.
> sh <- read.CBData("ShellTox.txt", with.freq = TRUE)

> levels(sh$Trt) <- c("Control", "Low", "Medium", "High")

> str(sh)

Classes 'CBData' and 'data.frame': 67 obs. of 4 variables:
$ Trt : Factor w/ 4 levels "Control","Low",..: 2 3 1 2 3 4 2 4 1 2 ...
$ ClusterSize: num 1 3 4 4 4 4 5 5 6 6 ...
$ NResp : num 0 0 0 0 0 0 0 0 0 0 ...
$ Freq : int 1 1 1 1 1 1 1 1 2 3 ...

Alternatively, if the data is already in a data frame, the CBData function can be used to define the roles of the
variables. Both read.CBData and CBData can accomodate cluster-level data that has not been summarized to have
frequencies of each clustersize/number of responses combination.

2. Marginal compatibility

A basic assumption of all of the following analyses is that of marginal compatibility (MC), which states that the
size of the cluster has no effect on either the marginal probability of response, or the correlation (any order) within
the cluster. Of course, this is only relevant if the clusters of different sizes are present in the data. We can test for
marginal compatibility:
> mc.test.chisq(sh)

$overall.chi
[1] 4.017923

$overall.p
[1] 0.4035857

$individual
$individual$chi.sq
cbdata$Trt

Control Low Medium High
0.46055742 2.04650267 0.04703645 1.46382641

1

2 A. SZABO

Number of responses

P
(R

=
r|

N
=

n)

0.0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

2 3

0 2 4 6 8 10 12

4

5 6 7

0.0

0.2

0.4

0.6

0.8

8

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12

9 10

0 2 4 6 8 10 12

11 12

Control Low Medium High

Figure 1. Density function of number of responses under MC by cluster-size estimated separately
for each treatment group

$individual$p
cbdata$Trt
Control Low Medium High

0.4973636 0.1525563 0.8283027 0.2263223

Neither the overall p-value of 0.4, or the individual treatment group p-values show evidence of deviation from
marginal compatibility.

Now we can obtain non-parametric estimates of the distribution of the number of responses in the cluster under
MC:

> sh.mc <- mc.est(sh)

Even though the mc.est functions gives estimates for all cluster-sizes, due to the marginal compatibility assumption
the estimates πr,M for the largest cluster-size M determine all the other estimates:

P (r responses | cluster size n) = πr,n =
M∑

t=0

h(r, t, n)πt,M , (1)

where h(r, t, n) =
(

t
r

)(
M−t
n−r

)
/
(
M
n

)
is the hypergeometric density function. Figure 1 shows the estimates.

> print(xyplot(Prob ~ NResp | factor(ClusterSize), groups = Trt, data = sh.mc,

+ subset = ClusterSize > 0 & ClusterSize < 13, type = "l", as.table = TRUE,

+ auto.key = list(columns = 4, lines = TRUE, points = FALSE), xlab = "Number of responses",

+ ylab = "P(R=r|N=n)"))

The density functions in Figure 1 are difficult to compare (there is no obvious shift); distribution functions often
provide a cleaner comparison, so they are plotted in Figure 2. These plots show that curves for the “Control” and
“Low” groups tend to be above the “Medium” and “High” group, suggesting the presence of a dose related trend.

> panel.cumsum <- function(x, y, ...) {

+ x.ord <- order(x)

+ panel.xyplot(x[x.ord], cumsum(y[x.ord]), ...)

+ }

> print(xyplot(Prob ~ NResp | factor(ClusterSize), groups = Trt, data = sh.mc,

+ subset = ClusterSize > 0 & ClusterSize < 13, type = "s", panel = panel.superpose,

+ panel.groups = panel.cumsum, as.table = T, auto.key = list(columns = 4,

+ lines = T, points = F), xlab = "Number of responses", ylab = "Cumulative Probability R(R>=r|N=n)",

+ ylim = c(0, 1.1)))

USING THE CORRBIN PACKAGE FOR NONPARAMETRIC ANALYSIS OF CORRELATED BINARY DATA 3

Number of responses

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

R
(R

>
=

r|
N

=
n)

0.2

0.4

0.6

0.8

1.0

1

0 2 4 6 8 10 12

2 3

0 2 4 6 8 10 12

4

5 6 7

0.2

0.4

0.6

0.8

1.0

8

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12

9 10

0 2 4 6 8 10 12

11 12

Control Low Medium High

Figure 2. Distribution functions of number of responses under MC by cluster-size estimated
separately for each treatment group

3. Testing for trend

Several methods have been proposed for testing for trend with correlated binary data; this package implements
3 types of tests: the Rao-Scott (RS) test, 3 versions of a GEE-based test1, and a stochastic ordering (SO) based
test. RS and GEE test for linear trend in the marginal probability of response, while SO tests for ordering of the
distribution functions (as in Figure 2) of the number of responses..

The common interface for accessing the trend tests is the trend.test function. It allows to pick the test, whether
a permutation-test based exact or an asymptotic (only for RS and GEE) p-value should be used, and set algorithm
options for the SO test. In this vignette we use R = 50 permutations to limit running time, but in actual work
larger values should be used.
> set.seed(4461)

> (so.res <- trend.test(sh, test = "SO", R = 50, control = soControl(eps = 0.1,

+ max.directions = 40)))

$statistic
[1] 18.81289
attr(,"ll0")
[1] -133.1832
attr(,"ll1")
[1] -123.7767

$p.val
[1] 0.02

attr(,"boot")

DATA PERMUTATION

Call:
boot(data = dat2, statistic = boot.LRT.fun, R = R, sim = "permutation")

Bootstrap Statistics :
original bias std. error

t1* 18.81289 -9.47545 4.318644

1The GEE approach is implemented, even though it is not quite a non-parametric test

4 A. SZABO

Statistic

D
en

si
ty

5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

*

Figure 3. Null distribution of the SO test statistic with the observed value marked with a red star.

The eps parameter sets the limit on the absolute error of the log-likelihood (and thus, the test statistic), while
max.directions is a tuning parameter for the default ISDM algorithm: it affects only the running time, and,
in general, larger values lead to fewer iterations that however take longer. The details of the permutation test
are saved in the output object, so the null distribution of the test statistic can be extracted for, say, a plot as in
Figure 3.
> hist(attr(so.res, "boot")$t[, 1], freq = FALSE, xlab = "Statistic", ylab = "Density",

+ main = "")

> points(so.res$statistic, 0, pch = "*", col = "red", cex = 3)

The other tests also show the presence of a statistically significant trend:
> trend.test(sh, test = "RS")

$statistic
[1] 2.364614

$p.val
[1] 0.009024435

> trend.test(sh, test = "GEE")

$statistic
[1] 2.532378

$p.val
[1] 0.00566459

The stochastic ordering approach provides not only a test for trend, but also the estimated distribution of the
number of responses under the alternative hypothesis of stochastic order. These can be obtained by the SO.mc.est
function, with the value of the log-likelihood, and convergence information. The estimates are then plotted (see
Figure 4).
> sh.SO.est <- SO.mc.est(sh, control = soControl(eps = 0.1, max.directions = 40))

> str(sh.SO.est)

'data.frame': 416 obs. of 4 variables:
$ NResp : num 0 1 0 1 2 0 1 2 3 0 ...
$ ClusterSize: num 1 1 2 2 2 3 3 3 3 4 ...
$ Trt : Factor w/ 4 levels "Control","Low",..: 1 1 1 1 1 1 1 1 1 1 ...

USING THE CORRBIN PACKAGE FOR NONPARAMETRIC ANALYSIS OF CORRELATED BINARY DATA 5

Number of responses

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

R
(R

>
=

r|
N

=
n)

0.2

0.4

0.6

0.8

1.0

1

0 2 4 6 8 10 12

2 3

0 2 4 6 8 10 12

4

5 6 7

0.2

0.4

0.6

0.8

1.0

8

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12

9 10

0 2 4 6 8 10 12

11 12

Control Low Medium High

Figure 4. Stochastically ordered distribution functions of the number of responses under MC by
cluster-size.

$ Prob : num 0.8695 0.1305 0.7814 0.1763 0.0424 ...
- attr(*, "loglik")= num -124
- attr(*, "converge")= Named num 0.0794 18
..- attr(*, "names")= chr "rel.error" "n.iter"

> print(xyplot(Prob ~ NResp | factor(ClusterSize), groups = Trt, data = sh.SO.est,

+ subset = ClusterSize < 13, type = "s", panel = panel.superpose, panel.groups = panel.cumsum,

+ as.table = T, auto.key = list(columns = 4, lines = T, points = F), xlab = "Number of responses",

+ ylab = "Cumulative Probability R(R>=r|N=n)", ylim = c(0, 1.1), main = ""))

4. Risk assessment

The No-Statistical-Significance-Of-Trend dose – the largest dose at which no trend in the rate of response has
been observed – is often used to determine a safe dosage level for a potentially toxic compound. The NOSTASOT
function computes this dose by a step-down approach of testing all doses, all but the last, etc. All three tests
(stochastic order, Rao-Scott, and GEE) are available.
> NOSTASOT(sh, test = "RS")

$NOSTASOT
[1] "Low"

$p
Low Medium High

0.496667059 0.001410127 0.009024435

For the Shell toxicology data, the “Low” dose of the drug shows no trend, but all higher doses do, so that’s the
NOSTASOT dose.

