arrays {DoE.base} | R Documentation |
Orthogonal arrays in the package
L18 L36 L4.2.3 L8.2.4.4.1 L9.3.4 L12.2.11 L12.2.2.6.1 L12.2.4.3.1 L16.2.8.8.1 L16.4.5 L18.2.1.3.7 L18.3.6.6.1 L20.2.19 L20.2.2.10.1 L20.2.8.5.1 L24.2.11.4.1.6.1 L24.2.12.12.1 L24.2.13.3.1.4.1 L24.2.20.4.1 L25.5.6 L27.3.9.9.1 L28.2.12.7.1 L28.2.2.14.1 L28.2.27 L32.2.16.16.1 L32.4.8.8.1 L36.2.1.3.3.6.3 L36.2.10.3.1.6.2 L36.2.10.3.8.6.1 L36.2.11.3.12 L36.2.13.3.2.6.1 L36.2.13.6.2 L36.2.16.9.1 L36.2.18.3.1.6.1 L36.2.2.18.1 L36.2.2.3.5.6.2 L36.2.20.3.2 L36.2.27.3.1 L36.2.3.3.2.6.3 L36.2.3.3.9.6.1 L36.2.35 L36.2.4.3.1.6.3 L36.2.8.6.3 L36.2.9.3.4.6.2 L36.3.12.12.1 L36.3.7.6.3 L40.2.19.4.1.10.1 L40.2.20.20.1 L40.2.25.4.1.5.1 L40.2.36.4.1 L44.2.15.11.1 L44.2.2.22.1 L44.2.43 L45.3.9.15.1 L48.2.24.24.1 L48.2.31.6.1.8.1 L48.2.33.3.1.8.1 L48.2.40.8.1 L48.4.12.12.1 L49.7.8 L50.5.10.10.1 L52.2.16.13.1 L52.2.2.26.1 L52.2.51 L54.3.18.18.1 L54.3.20.6.1.9.1 L56.2.27.4.1.14.1 L56.2.28.28.1 L56.2.37.4.1.7.1 L56.2.52.4.1 L60.2.15.6.1.10.1 L60.2.17.15.1 L60.2.2.30.1 L60.2.21.10.1 L60.2.23.5.1 L60.2.24.6.1 L60.2.30.3.1 L60.2.59 L63.3.12.21.1 L64.2.32.32.1 L64.2.5.4.10.8.4 L64.2.5.4.17.8.1 L64.4.14.8.3 L64.4.16.16.1 L64.4.7.8.6 L64.8.9 L68.2.18.17.1 L68.2.2.34.1 L68.2.67 L72.2.10.3.13.4.1.6.3 L72.2.10.3.16.6.2.12.1 L72.2.10.3.20.4.1.6.2 L72.2.11.3.17.4.1.6.2 L72.2.11.3.20.6.1.12.1 L72.2.12.3.21.4.1.6.1 L72.2.14.3.3.4.1.6.6 L72.2.15.3.7.4.1.6.5 L72.2.17.3.12.4.1.6.3 L72.2.18.3.16.4.1.6.2 L72.2.19.3.20.4.1.6.1 L72.2.27.3.11.6.1.12.1 L72.2.27.3.6.6.4 L72.2.28.3.2.6.4 L72.2.30.3.1.6.4 L72.2.31.6.4 L72.2.34.3.3.4.1.6.3 L72.2.34.3.8.4.1.6.2 L72.2.35.3.12.4.1.6.1 L72.2.35.3.5.4.1.6.2 L72.2.35.4.1.18.1 L72.2.36.3.2.4.1.6.3 L72.2.36.3.9.4.1.6.1 L72.2.36.36.1 L72.2.37.3.1.4.1.6.3 L72.2.37.3.13.4.1 L72.2.41.4.1.6.3 L72.2.42.3.4.4.1.6.2 L72.2.43.3.1.4.1.6.2 L72.2.43.3.8.4.1.6.1 L72.2.44.3.12.4.1 L72.2.46.3.2.4.1.6.1 L72.2.46.4.1.6.2 L72.2.49.4.1.9.1 L72.2.5.3.3.4.1.6.7 L72.2.51.3.1.4.1.6.1 L72.2.53.3.2.4.1 L72.2.6.3.3.6.6.12.1 L72.2.6.3.7.4.1.6.6 L72.2.60.3.1.4.1 L72.2.68.4.1 L72.2.7.3.4.4.1.6.6 L72.2.7.3.7.6.5.12.1 L72.2.8.3.12.4.1.6.4 L72.2.8.3.8.4.1.6.5 L72.2.9.3.12.6.3.12.1 L72.2.9.3.16.4.1.6.3 L72.3.24.24.1 L75.5.8.15.1 L76.2.19.19.1 L76.2.2.38.1 L76.2.75 L80.2.40.40.1 L80.2.51.4.3.20.1 L80.2.55.8.1.10.1 L80.2.61.5.1.8.1 L80.2.72.8.1 L80.4.10.20.1 L81.3.27.27.1 L81.9.10 L84.2.14.6.1.14.1 L84.2.2.42.1 L84.2.20.21.1 L84.2.20.3.1.14.1 L84.2.22.6.1.7.1 L84.2.27.6.1 L84.2.28.7.1 L84.2.33.3.1 L84.2.83 L88.2.43.4.1.22.1 L88.2.44.44.1 L88.2.56.4.1.11.1 L88.2.84.4.1 L90.3.26.6.1.15.1 L90.3.30.30.1 L92.2.2.46.1 L92.2.21.23.1 L92.2.91 L96.2.12.4.20.24.1 L96.2.17.4.23.6.1 L96.2.18.4.22.12.1 L96.2.19.3.1.4.23 L96.2.26.4.23 L96.2.39.3.1.4.14.8.1 L96.2.43.4.12.6.1.8.1 L96.2.43.4.15.8.1 L96.2.44.4.11.8.1.12.1 L96.2.48.48.1 L96.2.71.6.1.16.1 L96.2.73.3.1.16.1 L96.2.80.16.1 L98.7.14.14.1 L99.3.13.33.1 L100.2.16.5.3.10.3 L100.2.18.5.9.10.1 L100.2.2.50.1 L100.2.22.25.1 L100.2.29.5.5 L100.2.34.5.3.10.1 L100.2.4.10.4 L100.2.40.5.4 L100.2.5.5.4.10.3 L100.2.51.5.3 L100.2.7.5.10.10.1 L100.2.99 L100.5.20.20.1 L100.5.8.10.3 L104.2.100.4.1 L104.2.51.4.1.26.1 L104.2.52.52.1 L104.2.65.4.1.13.1 L108.2.1.3.33.6.2.18.1 L108.2.1.3.35.6.3.9.1 L108.2.10.3.31.6.1.18.1 L108.2.10.3.33.6.2.9.1 L108.2.10.3.40.6.1.9.1 L108.2.107 L108.2.12.3.29.6.3 L108.2.13.3.30.6.1.18.1 L108.2.13.6.3 L108.2.15.6.1.18.1 L108.2.17.3.29.6.2 L108.2.18.3.31.18.1 L108.2.18.3.33.6.1.9.1 L108.2.2.3.35.6.1.18.1 L108.2.2.3.37.6.2.9.1 L108.2.2.3.42.18.1 L108.2.2.54.1 L108.2.20.3.34.9.1 L108.2.21.3.1.6.2 L108.2.22.27.1 L108.2.27.3.33.9.1 L108.2.3.3.16.6.8 L108.2.3.3.32.6.2.18.1 L108.2.3.3.34.6.3.9.1 L108.2.3.3.39.18.1 L108.2.3.3.41.6.1.9.1 L108.2.34.3.29.6.1 L108.2.4.3.31.6.2.18.1 L108.2.4.3.33.6.3.9.1 L108.2.40.6.1 L108.2.8.3.30.6.2.18.1 L108.2.9.3.34.6.1.18.1 L108.2.9.3.36.6.2.9.1 L108.3.36.36.1 L108.3.37.6.2.18.1 L108.3.39.6.3.9.1 L108.3.4.6.11 L108.3.44.9.1.12.1 L112.2.104.8.1 L112.2.56.56.1 L112.2.75.4.3.28.1 L112.2.79.8.1.14.1 L112.2.89.7.1.8.1 L112.4.12.28.1 L116.2.115 L116.2.2.58.1 L116.2.23.29.1 L117.3.13.39.1 L120.2.116.4.1 L120.2.28.10.1.12.1 L120.2.30.6.1.20.1 L120.2.59.4.1.30.1 L120.2.60.60.1 L120.2.68.4.1.6.1.10.1 L120.2.70.3.1.4.1.10.1 L120.2.70.4.1.5.1.6.1 L120.2.74.4.1.15.1 L120.2.75.4.1.10.1 L120.2.75.4.1.6.1 L120.2.79.4.1.5.1 L120.2.87.3.1.4.1 L121.11.12 L124.2.123 L124.2.2.62.1 L124.2.22.31.1 L125.5.25.25.1 L126.3.20.6.1.21.1 L126.3.21.42.1 L126.3.23.6.1.7.1 L126.3.24.14.1 L128.2.3.4.11.8.13 L128.2.3.4.18.8.10 L128.2.3.4.25.8.7 L128.2.4.4.15.8.9.16.1 L128.2.4.4.22.8.6.16.1 L128.2.4.4.29.8.3.16.1 L128.2.4.4.36.16.1 L128.2.4.4.8.8.12.16.1 L128.2.5.4.10.8.11.16.1 L128.2.5.4.17.8.8.16.1 L128.2.5.4.24.8.5.16.1 L128.2.5.4.31.8.2.16.1 L128.2.5.4.8.8.14 L128.2.6.4.12.8.10.16.1 L128.2.6.4.19.8.7.16.1 L128.2.6.4.26.8.4.16.1 L128.2.6.4.33.8.1.16.1 L128.2.6.4.5.8.13.16.1 L128.2.64.64.1 L128.4.32.32.1 L128.8.16.16.1 L132.2.131 L132.2.15.6.1.22.1 L132.2.18.3.1.22.1 L132.2.18.6.1.11.1 L132.2.2.66.1 L132.2.22.33.1 L132.2.27.11.1 L132.2.42.6.1 L135.3.27.45.1 L135.3.32.9.1.15.1 L136.2.132.4.1 L136.2.67.4.1.34.1 L136.2.68.68.1 L136.2.83.4.1.17.1 L140.2.139 L140.2.17.10.1.14.1 L140.2.2.70.1 L140.2.21.7.1.10.1 L140.2.22.35.1 L140.2.25.5.1.14.1 L140.2.27.5.1.7.1 L140.2.34.14.1 L140.2.36.10.1 L140.2.38.7.1 L144.12.7 L144.2.103.8.1.18.1 L144.2.111.6.1.24.1 L144.2.113.3.1.24.1 L144.2.117.8.1.9.1 L144.2.136.8.1 L144.2.16.3.3.6.6.24.1 L144.2.44.3.11.12.2 L144.2.72.72.1 L144.2.74.3.4.6.6.8.1 L144.2.75.3.3.4.1.6.6.12.1 L144.2.76.3.12.6.4.8.1 L144.2.76.3.7.4.1.6.5.12.1 L144.3.48.48.1 L144.4.11.12.2 L144.4.36.36.1
The arrays and their properties are listed in the
data frame oacat
.
The design names also indicate the number of runs and the numbers of factors:
The first portion of each array name (starting with L) indicates number of runs,
each subsequent pair of numbers indicates a number of levels together with the frequency with which it occurs.
For example, L18.2.1.3.7
is an 18 run design with one factor with
2 levels and seven factors with 3 levels each.
Apart from L18
and L36
(Taguchi, but also in the collection under different names),
the source for the arrays is Warren Kuhfelds
collection of “parent” arrays.
It is possible to combine these with each other, or
with Plackett-Burman, full or fractional factorial designs by nesting, as described
by Warren Kuhfeld. This is not currently implemented.
(The two Taguchi arrays are derived arrays, not parent arrays, and are therefore
explicitly included.)
All arrays are of class oa
.
This package is currently under intensive development. Substantial changes are to be expected in the near future.
Ulrike Groemping
Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (1999) Orthogonal Arrays: Theory and Applications, Springer, New York.
Kuhfeld, W. (2009). Orthogonal arrays. Website courtesy of SAS Institute http://support.sas.com/techsup/technote/ts723.html.