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1 Introduction and Purpose

The purpose of the MiscPsycho package is to provide psychometricians with functions
to analyze their data, including classical item analyses, item response models (IRT), and
various functions commonly used in psychometrics. The functions provided in this package
are intended to provide the user with psychometric procedures commonly used in testing
programs. This document outlines the mathematical procedures used in the MiscPsycho
package in R. Additionally, I provide examples of how to use these functions.

2 The Rasch Model

The Rasch, or 1-parameter logistic model, is an IRT model that assumes items can be
adequately characterized via a single location (difficulty) parameter. Slopes across items
(discrimination) and/or guessing are assumed to be constant across all items such that aj = a
and cj = 0 where aj is the item discrimination parameter for item j and cj is the guessing
parameter (i.e., lower asymptote) for item j.

The basic Rasch model characterizes the probability of a correct response as:

Prob(Xij = 1|θi, βj) =
1

1 + e−(θi−βj)
i = (1, . . . , K); j = (1, . . . , N) (1)

where θi is the ability estimate of person i and βj is the location parameter for item j.

3 Local Independence

The term local independence is commonly used in IRT. This simply means that a persons
response to item j is independent of their response to any other item conditional on their
ability. This assumption provides a convenient mathematical way to express the likelihood
function since the joint density is then the product of the individual densities. Because the
item responses are dichotomous, the data are assumed to following a Bernoulli distribution,
thus giving rise to the following likelihood function:

L =
∏

Prob(Xij = 1|θi, βj)xij [1− Prob(Xij = 1|θi, βj)](1−xij) (2)

where xij is the response of person i to item j such that:

xij =

{
1 if correct response
0 otherwise

The derivatives below are obtained from the log-likelihood:

lnL =
∑
i

∑
j

xij ln [Prob(Xij = 1|θi, βj, aj)] + (1− xij) ln [1− Prob(Xij = 1|θi, βj, aj)] (3)

The log of the likelihood is a monotonic function of the likelihood and so the original
ordering of the estimates between 2 and 3 is preserved. That is, the maximum likelihood
estimates (MLE) of the log-likelihood are the same as the likelihood.
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4 The Joint Maximum Likelihood Procedure

As denoted in Equation (1), there are two latent parameters: θi and βj. All that is known is
the response of person i to item j. If θi and the item responses were known, then we could
simply maximize Equation (3) with respect to βj. Conversely, if βj were known and the item
responses, but not θi, then we could simply maximize Equation (3) with respect to θi.

This suggests an iterative maximization process and is exactly how joint maximum like-
lihood (JML) works. The JML process proceeds in an iterative fashion by first estimating
the ability parameters and then the item parameters. Operationally, the first step is to set
all item parameters to 0 and then maximize Equation (3) with respect to θ. With these
new ability estimates, we can now switch and maximize Equation (3) with respect to βj.
This process iterates between these steps until the difference in the estimates of the item
parameters does not differ by more than .001 (default convergence criterion).

The process steps can be succintly described as:

1. Set βj = 0 ∀ j

2. Set ln ∂L
∂θ

= 0 and solve

3. Set ln ∂L
∂β

= 0 and solve

4. Iterate between 2 and 3 until abs|βtj − βt−1j | < .001 ∀ j

where the superscript denotes iteration t.

5 Estimation and Derivatives

Of course, the function is non-linear and this requires an iterative maximization process. The
jml function uses Newton-Raphson steps and thus requires the first and second derivatives of
the likelihood function. In the current implementation of jml, the analytic first and second
derivatives are used in the Newton steps for the item parameters. However, the optim

function is used to estimate ability parameters.

5.1 First and Second Derivatives of Item Parameters

For the item parameters, we find the first and second partial derivatives of the likelihood
function with respect to βj. The gradient vector is:

g =


−
∑

i(xi1 − Pi1)
−
∑

i(xi2 − Pi2)
...

−
∑

i(xiN − PiN)

 (4)

where Pij is the probability of a correct response by person i to item j as denoted in Equa-
tion (1).

The Hessian matrix for the items is a diagonal matrix of the following form:
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H = diag

(
−
∑
i

Pi1[1− Pi1],−
∑
i

Pi2[1− Pi2], . . . ,−
∑
i

PiN [1− PiN ]

)
(5)

Using these derivatives, the Newton steps proceed as:

bt+1 = bt −H−1t gt (6)

where b is the vector of estimated item parameters, b = (β̂1, β̂2, . . . , β̂N), and the subscript
denotes iteration t.

The code for the jml function currently builds the full N × N Hessian matrix and pre-
multiplies the inverted Hessian by the gradient as represented algebraically in Equation (6).
Because the matrix is diagonal, it is sufficient to divide each element of the gradient by
its corresponding element in the Hessian. Hence, it is possible to use the vectorized cal-
culations in R rather than the matrix algebra. However, experimenting with both showed
that there was no computational efficiency in using the vectorized calculations rather than
building the full Hessian as the number of item parameters tends to be very small. Hence,
for transparency with the algebraic representation, I retain use of the matrix calculations.

The standard errors of the item parameters are simply derived from the diagonal elements
of the Hessian matrix at convergence. That is, -1 * H−.5jj evaluated at b are the asymptotic
standard errors.

5.2 First and Second Derivatives of Ability Parameters

It is also necessary to find the first and second partial derivatives of the ability parameters
and use an iterative process in the maximization process. In contrast to the item parameters
which uses the analytic derivatives, the function theta.max uses the optim function rather
than analytic first and second derivatives. In an original implementation of the function
theta.max, the analytic first and second derivatives were used within a while loop. However,
the R code is sufficiently more compact using optim.

Nonetheless, for full transparency into how the JML process proceeds, the first and second
derivatives of the ability estimates are presented. There is one difference in how items and
ability parameters are estimated in jml. The process in the section above shows that the
item parameters are estimated simultaneously, even though the estimate of bj is independent
of bj′ . But, for the ability parameters, the process proceeds one person at a time and not
simultaneously as for the items.

Estimation proceeds in this manner for ability parameters as a convenience of the fact
that the Hessian is diagonal. In the case of items, the Hessian tends to be small as the
number of items is often small. But, the Hessian for persons would be K × K, and its
dimensions could be very large.

The first and second derivatives of the likelihood function with respect to θ are:

∂L

∂θ
=
∑
i

(xij − Pij) (7)
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∂2L

∂2θ
=
∑
i

(1− Pij)(−Pij) (8)

6 Centering and Correction for JML Bias

Consistent with Winsteps, the jml function removes the indeterminacy in the item parame-
ters by centering the items on their mean. That is, the final item parameters are β̂j = β̂∗j − β̄
where β̄ = K−1

∑
j β̂j.

It is also well known that JML yields biased parameter estimates. The correction for bias
proposed by Wright and Stone (1979) is implemented in the jml function as β̂j ×K(K − 1).

7 Item Fit Statistics

When the jml converges, it generates as output estimates of the item parameters, their
standard errors, the sample size per item used in the estimation, and the Infit and Outfit
statistics. These statistics are commonly used to evaluate the fit of the item parameters
under the Rasch model.

In order to estimate both fit statistics it is first necessary to estimate a standardized
variable, z, which is computed as:

zij =
xij − Pij√

σ2
ij

(9)

where Pij is the expected probability of a correct response for person i to item j from
Equation (1) and σ2

ij is Pij(1− Pij). From this, the fit statistics are estimated as:

Infit =

∑
i z

2
ijσ

2
ij∑

i σ
2
ij

(10)

Outfit = N−1
∑
i

z2ij (11)

8 Classical Item Analysis

It is often of interest to examine item means (p-values), point-biserial correlations, and
estimates of reliability. Functions for these estimates are all provided in this package.

Psychometricians often compare p-values to examine if there are differences between
items. For instance, in a common item linking design one may compare the p-value for item
i appearing on one test form with the p-value for item i appearing on a different test form.
Sometmies, these comparisons take the form of a t-test, thus requiring estimates of the item
standard errors.

Educational testing situations, however, tend to reflect sampling designs that are more
complex than simple random samples. Consequently, students within clusters are more
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similar to each other than they are to students in other clusters. This can be formally
expressed as cov(εj(i), εj(i′)) 6= 0 ∀ i 6= i′, where the notation j(i) denotes student i in cluster
j. Consequently, a person determining the standard errors of the item means must consider
this cluster sample design to appropriately capture the true sampling variance of the items.

Under this cluster-sampling design, the appropriate procedure is to estimate design-
consistent standard errors. This is accomplished by first defining the ratio estimator of
the mean as:

f(Y ) =
Y

N
, (12)

where Y is the total of the variable and N is the population size. Treating both Y and N
as random variables, a first-order Taylor series expansion of the ratio estimator f(Y ) can be
used to derive the design-consistent variance estimator as:

var(f(Y )) =

[
∂f(Y )

∂Y
,
∂f(Y )

∂N

] [
var(Y ) cov(Y,N)
cov(Y,N) var(N)

] [
∂f(Y )

∂Y
,
∂f(Y )

∂N

]T
(13)

where

∂f(Y )

∂Y
=

1

N
, (14)

∂f(Y )

∂N
= − Y

N2
, (15)

var(Y ) =
k

k − 1

k∑
j=1

(Ŷj − Ŷ..)2, (16)

Ŷj =

Nj∑
i=1

Ŷj(i), (17)

Ŷ.. = k−1
k∑
j=1

Ŷj, (18)

var(N) =
k

k − 1

k∑
j=1

(N̂j − N̂..)
2, (19)

N̂.. = k−1
k∑
j=1

N̂j, (20)

cov(Y,N) =
k

k − 1

k∑
j=1

(Ŷj − Ŷ..)(N̂j − N̂..), (21)

where j indexes cluster (1, 2, . . . , k), j(i) indexes the ith member of cluster j, and Nj is the
total number of members in cluster j.
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Substituting these statistics into Equation (13) and expanding gives an approximate
estimate of the variance of f(Y ) as:

var(f(Y )) =
var(Y )N2 + var(N)Y 2 − 2cov(Y,N)NY

N4
(22)

The standard error is then taken as:

se =
√
var(f(Y )) (23)

The survey package in R has many useful functions for survey data. However, design-
consistent standard errors for item means can also be easily obtained through the use of the
classical function in this package.

9 Estimating Examinee Ability

There are multiple methods for assessing examinee ability. MiscPsycho offers the user three
common methods for estimating examinee ability via the irt.ability function: maximum
likelihood estimation (MLE), maximum a posteriori (MAP), and the expected a posteriori
(EAP).

Currently, many testing programs utilize a mixture of item formats including multiple
choice items as well as constructed response items. Ability estimates are therefore based on
the observed performance of examiness on these items. Hence, the likelihood function for a
mixture of items can be expressed as:

L(θ) = L(θ)MCL(θ)CR (24)

where L(θ)MC is the likelihood for dichotomously scored items:

L(θ)MC =
∏[

ci +
1− ci

1 + exp[−Dai(θ − bi)]

]xi [
1− ci +

1− ci
1 + exp[−Dai(θ − bi)]

]1−xi
(25)

where ci is the lower asymptote of the trace function for the ith item (sometimes referred
to as a guessing parameter), ai is the slope of the trace function (i.e., the discrimination
parameter), bi is the location parameter, xi is the binary response to the ith item (where
1 = correct), and D is a scaling factor commonly fixed at 1.7 to bring the logistic function
into coincidence with the probit function.

L(θ)CR is the likelihood for polytomously scored items based on the generalized partial
credit model:

L(θ)CR =
∏ exp

∑x
j=0Dai(θ − δij)∑M

r=0

[
exp

∑r
j=0Dai(θ − δij)

]
 (26)

where the notation is the same as above other than δij which is the jth step for the ith item.
The function irt.ability() operationalizes these methods and provides the user with

ability estimates assuming parameter estimates are known. The function is useful when there
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is a mixture of item formats (i.e., multiple choice and constructed response) or if there are
only multiple choice or only constructed response. For instance, in cases where there is only
multiple choice the likelihood function is simply:

L(θ) = L(θ)MC (27)

where L(θ)MC is defined in Equation (25). This general expression of the likelihood offers the
user flexibility as other common IRT models can be expressed as a special cases. For instance,
the Rasch model is a special case of the 3PL when ai = 1 ∀ i, ci = 0 ∀ i, and D = 1. As such,
this function can be used for many different IRT models when the appropriate constraints
on the item parameters are imposed.

In maximum likelihood estimation, the goal is to maximize L(θ). This is available via
the irt.ability function when method = ’MLE’. In some cases, there may exist prior in-
formation regarding the target population that can be used to update the current observed
data. Hence, in the language of bayesian statistics, we may include a prior distribution, g(θ),
which operationalizes this information:

MAP (θ) = L(θ)MCL(θ)CRg(θ) (28)

When this prior is included and the function is maximized, the result is known as the
MAP. This is available via the irt.ability function when method = ’MAP’. Within the
irt.ability function it is always assumed that g(θ) ∼ N(µ, σ2).

Rather than obtaining the MAP, one may prefer the mean of the posterior distribution,
or the EAP. This is obtained as:

EAP (θ) =

∫∞
−∞ θL(θ)g(θ)dθ∫∞
−∞ L(θ)g(θ)dθ

(29)

In Equation (29) there is no benefit of conjugacy, therefore the integral must be approx-
imated. In the irt.ability function, this is approximated via Gauss-Hermite quadrature
as:

EAP (θ) ≈
∑Q

i=1 θiL(θi)wi∑Q
i=1 L(θi)wi

(30)

where θi is node i (quadrature point) and wi is the weight at node i. This is available
in irt.ability when method=’EAP’. The weights and nodes used in the computation are
provided via the gauss.quad.prob function in the statmod package. The irt.ability

function allows the user to change the number of quadrature points used in the approxima-
tion.

The standard error of EAP (θ) is taken as the standard deviation of the posterior distri-
bution in Equation (29). Formally, the standard deviation of the posterior is:

SD[EAP (θ)] =

[∫∞
−∞ L(θ)g(θ)(θ − EAP (θ))2dθ∫∞

−∞ L(θ)g(θ)dθ

]1/2
(31)

Again, the integrals are approximated using Gauss-Hermite quadrature and so the im-
plementation of Equation (31) is based on the following:
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SD[EAP (θ)] ≈

[∑Q
i=1(θi − EAP (θ))2L(θi)wi∑Q

i=1 L(θi)wi

]1/2
(32)

The user should keep in mind that EAP estimates are conceptually different than the
MLE or the MAP. Both the MLE and the MAP are the result of an iterative maximization
procedure whereas the EAP is the result of a non-iterative integral.

The user should be aware that, with the 3PL, maximization of the objective function may
yield a local and not a global maximum. Hence, both the MAP and MLE are subject to this
condition (only under the 3PL and GPCM as the 1- and 2PL are always unimodal). The
user may implement different starting values via the start_val control option to determine
whether a global maximum has been reached.

However, the EAP estimate is not subject to this condition and will always provide
the posterior mean. Good approximations of the mean are dependent on the number of
quadrature points used. The default is 149 as this has been found to provide excellent
approximations in test cases, however the user should experiment to determine whether this
proves true in different scenarios.

10 Plausible Values

Suppose we desire random samples from the following posterior density:

p(θ|x, η̂) =
L(θ)g(θ)∫
L(θ)g(θ)dθ

(33)

where η̂ are estimates of the item response parameters and xi is the vector of observed re-
sponses to all items for the ith individual, L(θ) is the likelihood as expressed in Equation (24)
and g(θ) ∼ N(µ, σ2). Given the lack of conjugacy between the data likelihood and the prior
distribution, sampling from the posterior is difficult as its parametric form is unknown.

However, there are multiple methods that can be used to choose these samples. Meth-
ods used by the National Assessment of Educational Progress (NAEP) have assumed that
p(θ|x, η̂) ∼ N(µ, σ2) where µ and σ2 are the EAP mean and variance. In this case, sam-
pling is easy since the variates can be drawn from a normal distribution. However, this is
overly simplistic as it samples from a normal as an approximation given the complexity of
the posterior.

Another option is to use an MCMC algorithm, such as Rejection Sampling, to sample
from Equation (33). This is the method implemented in the plaus.val function. The
algorithm as implemented proceeds as follows:

1. Draw a random variate, θ∗i , from g(θ) ∼ N(0,1).

2. Draw a random variate, Ui, from Ui ∼ U[0,1].

3. Compute ri = p(θ∗i |x, η̂)/ [M * g(θ∗i )]

4. If Ui ≤ ri accept θ∗i as a draw from p(θ|x, η̂), else return to step 1
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In this rejection sampling algorithm M is a constant that can be arbitrarily chosen so long
as M > 1 and the normalizing constant in Equation (33) is computed using Gauss-Hermite
quadrature as illustrated in Equation (30). Gelman et al (2004) suggest the constant M must
have a known bound such that p(θ|x, η̂)/g(θ) ≤ M ∀ θ. The user can tune the acceptance
rate by choosing different values for M via the choose.M function.

By default, the function returns five random draws from the posterior density, although
more draws can be chosen. In fact, should the user choose many random draws, these variates
can be used to form an empirical distribution of the posterior such that the mean of these
variates is the EAP and the variance is var(EAP ).

11 Classification Accuracy: Integration over the Pos-

terior

In educational testing situations, it is common to identify a point on the theta scale (ability
scale) at which point a student must score in order to be considered “Proficient”, which is
denoted as γ. Hence, for scores below the cutpoint γ, we compute the probability that an
individual with observed score θi < γ is truly proficient as:

pi(θ
∗ > γ|θ < γ) =

∫∞
γ
L(θ)g(θ|µ, σ)dθ∫∞

−∞ L(θ)g(θ|µ, σ)dθ
(34)

where θ∗ is the unobserved true score, θ is the observed score on the proficiency scale, γ is
the cut score required for passing, L(θ) is the data likelihood given the item parameters as
expressed in Equation (24), and g(θ) is a normal population distribution. For individuals
with observed scores at or above the proficient cut point we compute the probability that
an individual at score θi ≥ γ is truly not proficient as:

pi(θ
∗ < γ|θ ≥ γ) =

∫ γ
−∞ L(θ)g(θ|µ, σ)dθ∫∞
−∞ L(θ)g(θ|µ, σ)dθ

(35)

The integrals in Equation (34) and Equation (35) are evaluated using Gaussian quadra-
ture. The nodes and weights used to evaluate these integrals are derived from the gauss.quad
and gauss.quad.prob functions in the statmod package. Currently, the functions used rely
on 49 quadrature points. This was found to provide excellent approximations to the integrals
when compared to the Nintegrate procedures in Mathematica.

For the numerator the following Gauss-Legendre quadrature is used if the student scored
below the proficient cut point:

f(yi) = L(yi + γ)g(yi + γ|µ, σ2) (36)∫ ∞
γ

L(θ)g(θ|µ, σ)dθ ≈
Q∑
i=1

f(yi)e
yiwi (37)

where γ is the proficient cut point, yi is node i = (1, . . . , Q), and wi is the weight at node i.
Similarly, the following is used if the student scored above the proficient cut point:
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f(yi) = L(γ − yi)g(γ − yi|µ, σ2) (38)∫ γ

−∞
L(θ)g(θ|µ, σ)dθ ≈

Q∑
i=1

f(yi)e
yiwi (39)

The normalizing constant is subsequently evaluated using Gauss-Hermite quadrature as:∫ ∞
−∞

L(θ)g(θ|µ, σ)dθ ≈
Q∑
i=1

L(yi)wi (40)

where wi are weights derived from a Gaussian probability distribution with parameters µ, σ.

12 Excessive Similarity in Student Response Patterns

With multiple choice tests it is often of interest to examine how student patterns of responses
compare to other students within a group to determine if answer copying may have occured.
Many “cheating” detection methods have been proposed and the implementation here is
based on the work of Wesolowsky (2000).

The goal of the method is relatively straightforward: identify pairs of students with
response patterns too similar to have occured from random chance alone. The interested
reader should consult the full text of the original article for complete details. However, I
note here only a few computational highlights.

The problem first requires that we estimate the probability that student j will answer
test item i correctly. This is estimated as:

p̂ij = (1− (1− ri)aj)aj (41)

where ri is the proportion of individuals within the class that answered the item correctly.
The parameter aj can be found as:

cj =

∑q
i=1 p̂ij
q

(42)

where q is the number of items on the test and cj is the proportion of questions answered
correctly by student j. Once an estimate of aj is available, we can subsequently estimate the
probability of answering each item correctly because all other values are observed. Hence,
the challenge is to obtain an estimate of aj.

In the cheat function provided in this package, the user can choose from three different
root finding algorithms: newton-raphson, bisection, or use Rs internal uniroot function.

13 Similar Student Index

The nearest neighbor functions in this package (called SSI for similar student index) were
designed to estimate growth eprcentiles for individuals students conditional on where they
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started. This is often needed because growth rates tend to vary for students conditional on
their prior test scores. In other words, students who start in higher locations on the scale
appear to grow at slower rates than students who start at lower locations on the scale.

Even though conditional norms for growth rates was the primary rationale for the devel-
opment of this function, it is clearly general and can be used to construct conditional norms
for any instance in which they are desired. The example below uses gain scores, but any
score needing a conditional norm could be use din the same manner as the example below.

As mentioned, the motivation to use a nearest neighbor approach stems from the fact that
growth rates for students tend to vary conditional on where the student began. Consequently,
variability in the growth rates may be a function of certain psychometric properties of the
scale and not a function of instructional efficacy. As such, it seems unwise to compare the
growth rates for students who began in very different points on the score scale. Therefore,
the goal is to compare student growth rates only to other students who started in the same
location on the score scale.

Some approaches accomplish this task through the use of regression-based methods using
the postest score as the outcome variable and condition on prior achievement scores. These
approaches are known to introduce bias into the estimates of the fixed effects when analysts
condition on variables measured with error. This effect is well-known, but conditioning on
variables measured with error perists as a measurement practice nonetheless.

Here I propose an entirely different approach. While the method is different, I share the
same motivation as others to compare growth rates among similar students. Given a student
i and a set of j characteristics associated with student i, identify K other students that are
most similar to student i on the set of j characteristics.

Given a suitable distance metric, the task is straight forward. Compute the distance
between student i and all other students in the data, sort those distances, choose the K
students in the data whose distance is closest to that of student i.

More formally stated, given a data set, M , with n data points in d-dimensional metric
space, X, the aim is to identify the K data points nearest to a query point q ∈ X. Imple-
menting this process requires a metric to measure the distance between the points, for which
we use the following:

Di =

√√√√ K∑
j=1

(qji − qji′)2 ∀ i 6= i′, j = 1, . . . , K (43)

The distance metric is based on the well-known Euclidean distance metric which yields the
`2 norm when more than two variables are used. This algorithm is simple to implement,
but can be computationally complex depending on the the size of n, the total of records in
the database. Because the process iterates over each student in the data to find the nearest
neighbor, the behavior of the algorithm expands with n and executes in O(n2 log n).

13.1 Computing Norms From K Nearest Neighbors

Equation (43) is used to identify a group of K similar students. Subsequently, this group
is used as the norming group by which the student’s percentile rank is determined. The
percentile ranks are easily determined as:
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zi =
ĝi − ḡm
σ(gm)

(44)

where ĝi is a student-level gain score, ḡm is the mean of ĝi for the N students selected to
be in the mth similar student group, and σ(gm) is the standard deviation of ḡm. Because
the procedure identifies a group of N students that varies for each comparison, we note that
both ḡm and σ(gm) vary when computing the z-score for every student as well.

Essentially, all that is needed to implement this procedure is a gain score statistic, gi,
and some set of variables that are used to identify other similar students. Those variables
may be other test scores, demographic characteristics, or geographic characteristics of the
students. Because our purpose here is to demonstrate the method for generating norms, we
implement a straight forward method for estimating a student’s gain. Virtually any other
method for estimating gi can be used for this process.

The statistic ĝi is the centered gain score for student i computed as:

gi = (θ̂gti − θ̄gt)− (θ̂gt−1,i − θ̄gt−1) (45)

where θ̂gti is the observed score at time t for student i and θ̄gt is the state mean for grade
g at time t. The scores are centered before computing gains because the vertical scale is
not truly an interval scale across grades. For example, a gain of 20 scaled score points from
grades 4 to 5 is not necessarily comparable to a gain of 20 points from grades 6 to 7. This
centering is an attempt to ameleriote some of the problems associated with comparing gains
across grades when the same scaling properties do not hold.

Percentile ranks for every zi can be easily obtained from the quantiles of the normal
distribution. Percentiles have the attractive property in that they are readily understood by
users of the data, but they are not useful for arithmetic manipulation, such as calculating
means. Z-scores, on the other hand, lack transparency to the user, but are useful for math-
ematical manipulation. Since percentiles can be readily obtained from the standard scores,
it is useful to have both as we further demonstrate.

14 Equating with the Stocking Lord Procedure

Stocking-Lord is an iterative procedure that minimizes the distance between two test char-
acteristic curves. This method has been implemented in via the function SL in this package
as described in this section.

Treating θ as a continuous variable, it is possible to introduce a population distribution
f(θ), integrate θ out of the function, and then perform the minimization as follows:

SL =

∫ [ I∑
i=1

p(θ; aia, bia, cia)−
I∑
i=1

p
(
θ;
aib
A
,Abib +B, cib

)]2
f(θ)dθ (46)

where i indexes item, i = (1, . . . , I), a and b index test forms, f(θ) ∼ N(µ, σ2) is the mean
and variance of the population distribution, and A and B are the linking constants.

The integral in the function SL cannot be evaluated easily. For that reason it is approx-
imated using Gauss-Hermite quadrature as follows:
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SL ≈
Q∑
q=1

[
I∑
i=1

p(θq; aia, bia, cia)−
I∑
i=1

p
(
θq;

aib
A
,Abib +B, cib

)]2
wq (47)

where q indexes quadrature point, q = (1, . . . , Q) and wq is the weight at quadrature point
q.

Minimization of the function SL with respect to A and B is implemented using Newton-
Raphson iterations as:

Lt+1 = Lt −H−1t g
T
t (48)

where the subscript denotes iteration t and:

L = [Â, B̂] (49)

g =

[
∂SL

∂A
,
∂SL

∂B

]
(50)

H =

[
∂2SL
∂A

∂2SL
∂B,∂A

∂2SL
∂A,∂B

∂2SL
∂B

]
(51)

The required derivatives for the 3-parameter logistic model are:

∂SL

∂A
= 2

 I∑
i=1

cia +
1− cia

1 + exp[−Daia(−bia − θ)]
−

I∑
i=1

cib +
1− cib

1 + exp
[
−Daib(−B−Abib+θ)

A

]


×
I∑
i=1

(1− cib) exp
[
−Daib(−B−Abib+θ)

A

] [
Dabibbi
A

+ Daib(−B−Abib+θ)
A2

]
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])2


∂SL

∂B
=

 I∑
i=1

cia +
1− cia

1 + exp[−Daia(−bia − θ)]
−

I∑
i=1

cib +
1− cib

1 + exp
[
−Daib(−B−Abib+θ)

A

]


×2
I∑
i=1

Dabi(1− cbi) exp
[
−Daib(−B−Abib+θ)

A

]
A
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])2
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∂2SL

∂A
=

I∑
i=1

(1− cib) exp
[
−Daib(−B−Abib+θ)

A

] [
Dabibbi
A

+ Daib(−B−Abib+θ)
A2

]
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])2


2

+2

 I∑
i=1

cia +
1− cia

1 + exp[−Daia(−bia − θ)]
−

I∑
i=1

cib +
1− cib

1 + exp
[
−Daib(−B−Abib+θ)

A

]


×
I∑
i=1

(1− cib) exp
[
−Daib(−B−Abib+θ)

A

] [
−2Dabibbi

A2 − 2Daib(−B−Abib+θ)
A3

]
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])3


+
I∑
i=1

(1− cib) exp
[
−Daib(−B−Abib+θ)

A

] [
Dabibbi
A

+ Daib(−B−Abib+θ)
A2

]2
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])3


−
I∑
i=1

2(1− cib) exp
[
−2Daib(−B−Abib+θ)

A

] [
Dabibbi
A

+ Daib(−B−Abib+θ)
A2

]2
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])3


∂2SL

∂B
= 2

I∑
i=1

Dabi(1− cbi) exp
[
−Daib(−B−Abib+θ)

A

]
A

(
1 + exp

[
−Daib(−B−Abib+θ)

A

]2)


2

+2

 I∑
i=1

D2a2bi(1− cbi) exp
[
−2Daib(−B−Abib+θ)

A

]
A2
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])2


+
I∑
i=1

2D2a2bi(1− cbi) exp
[
−2Daib(−B−Abib+θ)

A

]
A2
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])3



×

 I∑
i=1

cia +
1− cia

1 + exp[−Daia(−bia − θ)]
−

I∑
i=1

cib +
1− cib

1 + exp
[
−Daib(−B−Abib+θ)

A

]
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∂2SL

∂A, ∂B
= 2

I∑
i=1

Dabi(1− cbi) exp
[
−Daib(−B−Abib+θ)

A

]
A
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])2


×
I∑
i=1

(1− cib) exp
[
−Daib(−B−Abib+θ)

A

] [
Dabibbi
A

+ Daib(−B−Abib+θ)
A2

]
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])2


+2

 I∑
i=1

cia +
1− cia

1 + exp[−Daia(−bia − θ)]
−

I∑
i=1

cib +
1− cib

1 + exp
[
−Daib(−B−Abib+θ)

A

]


×
I∑
i=1

Dabi(1− cib) exp
[(
−Daib(−B−Abib+θ)

A

)] [
Dabibbi
A

+ Daib(−B−Abib+θ)
A2

]
A
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])2


−
I∑
i=1

Dabi(1− cbi) exp
[
−Daib(−B−Abib+θ)

A

]
A2
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])2


+
I∑
i=1

2Dabi(1− cib) exp
[
−2Daib(−B−Abib+θ)

A

] [
Dabibbi
A

+ Daib(−B−Abib+θ)
A2

]
A
(

1 + exp
[
−Daib(−B−Abib+θ)

A

])3


Initial starting values for the linking constants A and B are taken from the mean/sigma
transformation

A =
σ(b̂b)

σ(b̂a)
(52)

B = µ(b̂b)− A ∗ µ(b̂a) (53)

15 Levenshtein Distance

R has many functions for pattern matching, especially those based on grep. However, this
function is added to this package for a specific psychometric application–the merging of
student databases to create longitudinal data files. The complete details demonstrating how
to apply this function for merging student records to create longitudinal data files is found
in Doran (in press) 1

Assume we have two character strings that we wish to compare. The first string is Bill
Clinton and the second string is William Clinton. The purpose of the LD procedure
is to empirically determine how similar these two character strings are. In this example,

1Application of the Levenshtein Distance Metric For the Construction of Longitudinal Data Files. Edu-
cational Measurement: Issues and Practice.
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the last name is exactly the same and no edits, insertions, or substitutions are necessary.
The first name differs, however. Transforming Bill to William would require the following
operations:

Operation 1: Substitute W for the B

Operation 2: Insert i after the Will

Operation 3: Insert a after the Willi

Operation 4: Insert m after the Willia

Four operations are needed to transform Bill to William; hence, the edit distance is 4.
The edit distance is useful, but normalizing the distance to fall within the interval [0,1] is
preferred because it is somewhat difficult to judge whether an LD of 4 suggests a high or low
degree of similarity. For instance, a comparison of Tim to Jane yields an LD of 4 as does the
Tim to Timothy comparison. However, the former is clearly a different comparison, whereas
the latter is not. Our method for normalizing the LD is sensitive to this scenario and would
return results that would indicate the latter is more similar than the former.

In our implementation, the Levenshtein distance is transformed to fall in this interval as
follows:

LND = 1− LD

max(s1, s2)
(54)

where LD is the edit distance and max(s1, s2) denotes that we divide by the length of
the larger of the two character strings. This normalization, referred to as the Levenshtein
normalized distance (LND), yields a statistic where 1 indicates perfect agreement between
the two strings, and a 0 denotes imperfect agreement. The closer a value is to 1, the more
certain we can be that the character strings are the same; the closer to 0, the less certain.
This normalized statistic is similar to the Jaro-Winkler method.

In addition to applying the LND, it is useful to determine the chances of observing an
LND value of x or larger in a population of names. In other words, the desired inference
is the probability that a comparison of two random character strings would yield an LND
statistic of x. This probability can be used to help determine whether the LND statistic
obtained between the two character strings is likely to occur from random chance.

For example, if a comparison of two strings returned an LND of .7 and the P(LND ≥
.7) = .001, we could be relatively confident that any two comparisons yielding an LND of
.7 are similar names given that it is so unlikely that an LND = .7 would occur from a
chance comparison of two random strings. On the other hand, if a comparison of two strings
returned an LND of .3 and the P(LND ≥ .3) = .6, then we have some assurance that an
LND of .3 yields an incorrect comparison given that an LND of .3 would occur about 60%
of the time when two random strings are compared.

Given a large data set with many names (such as a student test score database), the
following procedure can be used to obtain these probabilities empirically:

1. Take a random sample without replacement of n names from the data.
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2. Compare each n name to all N student names in the data to obtain the LND.

3. Count the number of times the LND of xi is observed.

4. Divide xi by the total number of comparisons made to obtain p(xi).

Because the intended inference is P(x ≥ xi), we compute the cumulative probabilities as:

P(x ≥ xi) = 1−
∑
xi≤x

p(xi) (55)

16 Examples

The following section illustrates sample use of the functions in the MiscPsycho package.
As a first step, I use the simRasch function to generate sample data for 200 individuals to 10
test items. The default values of mu and sigma are 0 and 1 for the distribution of abilities.

> set.seed(1)

> dat <- simRasch(200, 10)

The simRasch function returns three values in a list:

> str(dat)

List of 3

$ data :'data.frame': 200 obs. of 10 variables:

..$ V1 : num [1:200] 0 0 0 0 0 0 0 1 0 0 ...

..$ V2 : num [1:200] 0 1 1 1 1 1 1 1 1 1 ...

..$ V3 : num [1:200] 0 0 0 0 0 0 0 0 0 0 ...

..$ V4 : num [1:200] 0 0 0 0 0 0 0 0 1 0 ...

..$ V5 : num [1:200] 0 0 0 0 0 0 0 1 0 1 ...

..$ V6 : num [1:200] 1 0 1 1 0 0 0 0 0 0 ...

..$ V7 : num [1:200] 1 1 1 1 0 0 1 1 1 0 ...

..$ V8 : num [1:200] 0 0 0 1 0 0 0 0 1 0 ...

..$ V9 : num [1:200] 1 1 1 1 1 1 1 1 1 1 ...

..$ V10: num [1:200] 0 0 0 0 0 0 0 0 0 0 ...

$ generating.values: num [1:10] 0.953 -1.89 2.726 2.387 2.662 ...

$ theta : num [1:200] -0.626 0.184 -0.836 1.595 0.33 ...

These values are data, which are the item responses, generating.values which are the
true values of the item parameters drawn from a U(−3, 3) distribution and theta which are
the true ability estimates drawn from a N(µ, σ) distribution.
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16.1 Estimating Reliability

It is often useful to examine these data prior to running the IRT model. We can use the
alpha function to examine the reliability of the test. Note, the alpha.Summary function has
been deprecated. The alpha function now returns the info that was previously returned by
alpha.Summary.

R users are often familiar with the formula methods used to specify a fitted model, such
as the use of a formula in the lm function. Almost all functions in this package also make
use of the formula methods as I demonstrate below.

> itemDat <- dat$data

> ff <- as.formula(paste("~", paste(names(itemDat), collapse = "+")))

> (aa <- alpha(ff, itemDat))

Call:

alpha.formula(formula = ff, data = itemDat)

Cronbach's Coefficient Alpha: 0.4942997

> summary(aa)

Cronbach's Coefficient Alpha:

alpha

[1,] 0.4943

Number of test items: 10

Conditional Alpha:

The data below show what alpha would be if the item were removed.

Item alpha

1 1 0.3988681

2 2 0.4895385

3 3 0.4856901

4 4 0.4467352

5 5 0.5122087

6 6 0.4429340

7 7 0.4554410

8 8 0.4463020

9 9 0.4954350

10 10 0.4805648

The alpha function for the simulated data in this example returns a value of 0.49 for the
total test. The summary methods prints the conditional alpha, or the alpha that would be
obtained if the item were removed from the test.
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16.2 Classical Item Analysis

Another preliminary way to examine the data prior to running the IRT model is to examine
classical item statistics such as p-values and point-biserial correlations. The p-values are
simply the means of the items over students. The point-biserial is the correlation of item j
with the total score where the total score excludes item j. These statistics are accesible via
the classical function.

The classical function also returns standard errors of the p-values. Our use of the function
is simple:

> (aa <- classical(ff, data = itemDat))

Call:

classical.formula(formula = ff, data = itemDat)

Classical Item Analysis:

P-Values: 0.300 0.850 0.105 0.135 0.085

Point Biserial Correlations: 0.37466067 0.13301172 0.13991013 0.27627535 0.02100712

> summary(aa)

Call:

classical.formula(formula = ff, data = itemDat)

P.Values Std.Errors PointBiserials

V1 0.300000 0.032404 0.3747

V2 0.850000 0.025249 0.1330

V3 0.105000 0.021677 0.1399

V4 0.135000 0.024164 0.2763

V5 0.085000 0.019720 0.0210

V6 0.290000 0.032086 0.2719

V7 0.680000 0.032985 0.2420

V8 0.205000 0.028546 0.2662

V9 0.935000 0.017432 0.0897

V10 0.100000 0.021213 0.1599

However, assume we have a grouping variable, such as a school or classroom and we wish
to consider the correlation of students within clusters to obtain standard errors that reflect
the sampling design. Our use of the function would simply add two arguments: designSE

and group. The designSE simply tells our function to return design consistent standard
errors. The group argument requires that we specify a variable in the data frame to serve
as the grouping variable. In our example below, this is a variable called “group”.

> itemDat$group <- gl(10, 20)

> (aa <- classical(ff, data = itemDat, design = TRUE, group = group))
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Call:

classical.formula(formula = ff, data = itemDat, designSE = TRUE, group = group)

Classical Item Analysis:

P-Values: 0.300 0.850 0.105 0.135 0.085

Point Biserial Correlations: 0.37466067 0.13301172 0.13991013 0.27627535 0.02100712

> summary(aa)

Call:

classical.formula(formula = ff, data = itemDat, designSE = TRUE,

group = group)

P.Values Std.Errors PointBiserials

V1 0.300000 0.025820 0.3747

V2 0.850000 0.022361 0.1330

V3 0.105000 0.032872 0.1399

V4 0.135000 0.030777 0.2763

V5 0.085000 0.015000 0.0210

V6 0.290000 0.028674 0.2719

V7 0.680000 0.035119 0.2420

V8 0.205000 0.029297 0.2662

V9 0.935000 0.013017 0.0897

V10 0.100000 0.014907 0.1599

16.3 Estimating Rasch Parameters via JML

Now that we have examined our data, we can proceed with IRT estimation using the jml

function. This function follows the same convention as above now using the formula call to
estimate model parameters. Estimating item parameters involves only a very simple call to
jml:

> (fm1 <- jml(ff, itemDat, bias = TRUE))

Call:

jml.formula(formula = ff, data = itemDat, bias = TRUE)

Coefficients:

[,1]

[1,] 0.31

[2,] -3.25

[3,] 1.99

[4,] 1.63

[5,] 2.27

[6,] 0.37

[7,] -1.93
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[8,] 0.99

[9,] -4.42

[10,] 2.05

> summary(fm1)

Call:

jml.formula(formula = ff, data = itemDat, bias = TRUE)

Number of iterations to completion: 10

Number of individuals used in estimation: 200

Estimate StdError Infit Outfit

[1,] 0.30660 0.17977 0.84452 0.7426

[2,] -3.25481 0.22831 1.12141 0.8945

[3,] 1.98560 0.25185 1.06826 1.0801

[4,] 1.63370 0.22960 0.93886 0.7540

[5,] 2.26564 0.27328 1.22061 1.7613

[6,] 0.37229 0.18123 0.98331 0.8102

[7,] -1.92825 0.17920 0.94057 0.8383

[8,] 0.98902 0.19964 0.97751 0.8118

[9,] -4.42122 0.31654 1.03143 1.1742

[10,] 2.05143 0.25657 1.03931 1.0662

> coef(fm1)

[,1]

[1,] 0.3065984

[2,] -3.2548110

[3,] 1.9855983

[4,] 1.6337026

[5,] 2.2656415

[6,] 0.3722937

[7,] -1.9282549

[8,] 0.9890192

[9,] -4.4212190

[10,] 2.0514313

The summary output provides statistic most users of Rasch models are familiar with
including Estimate, which are the b-values of the items, Std.Error the standard errors of
the b-values, and the Infitand Outfit statistics.

It may also be useful to examine some diagnostic plots of the items. Fitting an IRT
model using the jml function returns an object of class “jml” and there is now a plot method
associated with that class. Hence, users can explore the items via the following calls:

> plot(fm1)

> plot(fm1, all = FALSE, item = 3, pch = 2, lty = 1)
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The first call cycles through each of the test items and prompts the user for input before
proceeding to the next item. However, if the user wants to view one, and only one specific
item, then we set all = FALSE and specify which item to view via the argument item = 3.
In this case, we view item 3 in our data. The plot.jml function inherits other arguments
from par, hence we can use arguments such as pch or lty.

16.4 Generating Score Conversion Tables

Now that the item parameters are estimated, it is possible to develop a score conversion table.
A score conversion table gives the ability estimate for an individual with a total raw score
of X =

∑
j xij. Since total score is a sufficient statistics for the Rasch model all individuals

with the same raw score have the same ability estimate. An ability estimate is not generated
for individuals with all items correct or zero items correct. That is because it is not possible
to generate a maximum likelihood estimate (MLE) for these scores as the likelihood function
is unbounded.

The score conversion table can be easily created because the item parameters from the
jml object can be easily accessed via the traditional coef extractor function used on fitted
model objects. For instance,

> (ss <- scoreCon(coef(fm1)))

Coefficients:

[1] -4.14 -2.64 -1.36 -0.35 0.43 1.10 1.73 2.43 3.36

> summary(ss)

Estimate StdError Raw.Score

[1,] -4.13645 1.31500 1

[2,] -2.63521 1.17100 2

[3,] -1.35869 1.07700 3

[4,] -0.34710 0.93500 4

[5,] 0.43126 0.83900 5

[6,] 1.09638 0.79900 6

[7,] 1.73360 0.80500 7

[8,] 2.42663 0.87300 8

[9,] 3.36213 1.10600 9

16.5 Estimating Examinee Ability

The prior examples work for the basic Rasch model since the total raw score is a sufficient
statistic and there is a one-to-one relationship between the raw score total and the MLE.
However, MiscPsycho also includes a function irt.ability that can be used to estimate
the MLE, MAP, or EAP for any IRT model based on the 3-PL or Generalized Partial Credit
Model (GPCM). In other words, the the model can include only dichotomous items, only
polytomous items, or a mixture of item types.
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In order to use this function, we must first organize the estimates of the item parameters
into a list of lists. This task is simple, but a little prescriptive. For the first example, assume
we have only two dichotomous test items based on the 2PL. Assume the item parameters
for the first item are a1 = 1, b1 = 0 and for the second item a2 = 2, b2 = 1. Because this is a
2PL, the lower asymptote for both items is fixed at 0. Given these estimates, we can build
the list as follows:

> alpha <- c(1, 2)

> beta <- c(0, 1)

> guess <- c(0, 0)

> params <- list(`3pl` = list(a = alpha, b = beta, c = guess),

+ gpcm = NULL)

> params

$`3pl`

$`3pl`$a

[1] 1 2

$`3pl`$b

[1] 0 1

$`3pl`$c

[1] 0 0

$gpcm

NULL

In this example, we have no polytomous items, hence the list for the GPCM is NULL,
denoting the list is empty. Once the list is created, use of the irt.ability function is
simple. Assume we have an individual with a response pattern of correct, incorrect.

We can create a vector x with the observed responses to these items. In this example,
there are only two items and they are both dichotomous. So, we use ind.dichot = c(1,2)

which denotes that items 1 and 2 in the vector x are multiple choice.

> x <- c(1, 0)

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MLE")

[1] 0.4923267

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MAP")

[1] 0.3191912

> irt.ability(x, params, ind.dichot = c(1, 2), method = "EAP")

[1] 0.1919161
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Note that simply changing the argument to method permits for us to estimate the MLE,
MAP, or the EAP. The default values for the population parameters (i.e., priors) is N(0, 1).
However, changing these is also simple using the list of controls as follows:

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MAP",

+ control = list(mu = 0.5, sigma = 1.2))

[1] 0.4942363

In the example above, the MAP is estimated using a N(.5, 1.2) prior. The use of the
argument ind.dichot is very simple. Assume we have a vector x such as x <- c(0,3,1)

where item 1 is multiple choice, item 2 is polytomous, and item 3 is multiple choice. In this
hypothetical case, the argument would be specified as ind.dichot = c(1,3) denoting that
items 1 and 3 in the vector x are dichotomous.

Now, it may be the case that there is a mixture of items including dichotomous and
polytomous. In this case, we organize the list of lists as follows:

> params <- list(`3pl` = list(a = c(1, 1), b = c(0, 1),

+ c = c(0, 0)), gpcm = list(a = c(1, 1), d = list(item1 = c(0,

+ 1, 2, 3, 4), item2 = c(0, 0.5, 1, 1.5))))

The only difference between this example and the first is that the list for gpcm is no longer
NULL. It indeed contains two polytomous items. Note that d1i = 0 (the first step category
for item i is fixed at 0) for every item. Now, in this example, we create the vector x. Again,
the first two items are dichotomous, but the last two are polytomous. Hence, the scores are
incorrect, correct, scored in category 2,scored in category 2.

> x <- c(0, 1, 2, 2)

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MLE")

[1] 0.8270681

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MAP")

[1] 0.6762342

> irt.ability(x, params, ind.dichot = c(1, 2), method = "EAP")

[1] 0.6408158

The calls to irt.ability resembles the calls in the first example when there were only
dichotomous items. That is because the dichotomous scores in the vector x are again in
positions 1 and 2. Hence we again use ind.dichot = c(1,2).

To complete our example, assume all items are polytomous. In this case, we organize the
list as:
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> params <- list(`3pl` = NULL, gpcm = list(a = c(1, 1),

+ d = list(item1 = c(0, 1, 2, 3, 4), item2 = c(0, 0.5,

+ 1, 1.5))))

> irt.ability(c(2, 3), params, method = "MLE")

[1] 1.401820

> irt.ability(c(2, 3), params, method = "MAP")

[1] 1.101404

> irt.ability(c(2, 3), params, method = "EAP")

[1] 1.091514

Note that the list of ’3pl’ is NULL and we do not use the argument ind.dichot. Given
the way the likelihood function is expressed, the function irt.ability is extremely flexible
and can be used to estimate ability using many different IRT models. For example, the 3PL
reduces to the Rasch model for dichotomous items when ai = 1 ∀ i, ci = 0 ∀ i, and D = 1.
As such, we can go back and use the b parameters estimated using jml in the prior example
and use irt.ability as follows:

> params <- list(`3pl` = list(a = rep(1, 10), b = coef(fm1),

+ c = rep(0, 10)), gpcm = NULL)

> x <- c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)

> irt.ability(x, params, ind.dichot = c(1:10), method = "MLE",

+ control = list(D = 1))

[1] 0.4314441

If you go back to the score conversion table created using scoreCon in the prior exam-
ple, you can see that the ability estimate associated with a raw score of 5 is .43. Hence,
both irt.ability, scoreCon, and theta.max give exactly the same results. However,
irt.ability is much more flexible than the other functions.

In fact, we can even constrain certain parameters for the GPCM such that it too reduces
to the Rasch model and use irt.ability as follows:

> tt <- as.list(coef(fm1))

> ll <- lapply(tt, function(x) c(0, x))

> params <- list(`3pl` = NULL, gpcm = list(a = rep(1, 10),

+ d = ll))

> x <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)

> irt.ability(x, params, method = "MLE", control = list(D = 1))

[1] 0.4314441
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The reason this works is because the GPCM reduces to Master’s Partial Credit Model
when the a = 1 ∀ i and D = 1 and Master’s Partial Credit Model reduces to the Rasch
model when there are two categories. Note, for this to work under this parameterization, a
“correct” score means the individual scored in category 2 and an incorrect response means
the individual scored in category 1.

This example is provided simply to illustrate the flexibility of this function for estimat-
ing θ when certain constraints are placed on the item parameters. Of course, it would be
unreasonable to estimate ability estmates for the Rasch model as this requires more work
that necessary. However, it clearly illustrates how IRT models are connected and gives the
user greater flexibility.

16.6 Sampling from the Posterior

R provides many built in functions for drawing random samples from a distribution. For
example, rnorm or runif draw random variates from a normal or a uniform distribution.
However, the Bayesian IRT model expressed in Equation (33) has no known form and sam-
pling from it is difficult. MiscPsycho provides the plaus.val function that uses rejection
sampling to draw random variates from the IRT posterior.

This function is also simple to use and its arguments are almost exactly the same as
those used in irt.ability. for example, assume we have the following item parameters
organized as a list of lists. We can use the plaus.val function to draw random draws from
the posterior as follows:

> params <- list(`3pl` = list(a = c(1, 1), b = c(0, 1),

+ c = c(0, 0)), gpcm = list(a = c(1, 1), d = list(item1 = c(0,

+ 1, 2, 3, 4), item2 = c(0, 0.5, 1, 1.5))))

> plaus.val(x = c(0, 1, 2, 2), params = params, ind.dichot = c(1,

+ 2))

[1] 0.9074444 0.3432524 0.7250432 1.3044971 0.4565303

Note, that by default the function returns five random draws as is done in NAEP. How-
ever, this can be modified via the PV argument as:

> aa <- plaus.val(x = c(0, 1, 2, 2), params = params, ind.dichot = c(1,

+ 2), PV = 1000)

> mean(aa)

[1] 0.6642396

Now, we can compare the mean of these variates to the EAP estimate:

> irt.ability(x = c(0, 1, 2, 2), params = params, ind.dichot = c(1,

+ 2), method = "EAP")

[1] 0.6408158

I do not proceed with an example here, but one could easily apply this function over
many examiness, generate plausible values for each examinee, and subsequently study the
population characteristics of the examinees using the means of the plausible values.
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16.7 Posterior Density Function

Another useful function in MiscPsycho is posterior. Just as dnorm is the density for a
normal distribution posterior is the density for the IRT posterior. Suppose we desire the
density at θ = 1. We can simply use this function as:

> posterior(x = c(0, 1, 2, 2), theta = 1, params = params,

+ ind.dichot = c(1, 2))

[1] 0.6755286

16.8 Classification Accuracy

The class.acc function can be used to perform integration over the posterior distribution
to identify the proportion of the distribution that falls above (or below) or specific cut point
on the ability scale.

Simply to illustrate use of the function, assume γ = 0.

> head(dat$data)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1 0 0 0 0 0 1 1 0 1 0

2 0 1 0 0 0 0 1 0 1 0

3 0 1 0 0 0 1 1 0 1 0

4 0 1 0 0 0 1 1 1 1 0

5 0 1 0 0 0 0 0 0 1 0

6 0 1 0 0 0 0 0 0 1 0

In looking at the raw data, we can see that individual 1 has a raw score of 3, which
corresponds to an ability estimate of -1.36 from the score conversion table. So, we can ask
what is the probability that this individual’s true score is above 0 (γ) using the class.acc

function as follows:

> x <- as.numeric(dat$data[1, ])

> params <- list(`3pl` = list(a = rep(1, 10), b = coef(fm1),

+ c = rep(0, 10)), gpcm = NULL)

> rr <- class.acc(x, prof_cut = 0, params = params, ind.dichot = c(1:10),

+ aboveC = TRUE, control = list(D = 1))

> rr

[1] 0.1602521

So, we know that the probability is 16 percent that this individuals true score is above
0. Now, we can use the function in the other direction and also ask, what is the probability
that an individual’s true score is below 0. From the raw data we see that individual 4 has a
raw score of 5 which corresponds to an ability estimate of .43. So, we can use the function
as follows:

30



> x <- as.numeric(dat$data[4, ])

> rr <- class.acc(x, prof_cut = 0, params = params, ind.dichot = c(1:10),

+ aboveC = FALSE, control = list(D = 1))

> rr

[1] 0.3623349

This shows that there is a 36 percent probability that this individuals true score is below
0.

This function is general and will also work with other IRT models. Here we revisit an
example using the 2PL.

> a <- c(1.45, 1.84, 2.55, 2.27, 3.68, 4.07, 2.26, 1.87,

+ 2.19, 1.33)

> b <- c(-0.6, -0.82, -1.6, -0.87, -1.41, -1.33, -1.16,

+ -0.11, -0.64, -1.23)

> params <- list(`3pl` = list(a = a, b = b, c = rep(0,

+ 10)), gpcm = NULL)

> x <- c(rep(0, 9), 1)

> rr <- irt.ability(x, params, ind.dichot = c(1:10), method = "EAP")

> rr

[1] -1.851890

So, we see that the EAP for this individual is -1.85. We can use the class.acc function
to ask what proportion of the posterior density falls above -1.5 on the theta scale:

> rr <- class.acc(x, prof_cut = -1.5, params, ind.dichot = c(1:10),

+ aboveC = TRUE)

> rr

[1] 0.09574338

This suggests there is only about a 10 percent probability that the true score for this
individual is above θ = −1.5.

16.9 Similar Student Index: Generating Conditional Norms

The SSI function implements the methods previously described for the similar student index.
To demonstrate, assume we have three test scores for all students: a math score, a reading
score, and a science score. Assume we desire to generate a math score norm for each student
based on other students in the data that most resemble them. We first need a data file, such
as the one below.

> tmp <- data.frame(ID = 1:100, mathScore = rnorm(100),

+ readScore = rnorm(100), scienceScore = rnorm(100))
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Now to proceed, we require that we somehow operationalize the term “similar”. That is,
how do we decide who is most like the student in question? In this implementation, this
is accomplished empirically using what I refer to as “conditioning” variables. In this case,
suppose we want to construct a math norm for a student based on the 20 other students in
the data whose reading and math scores most resemble those of our student (note, norms
based on 20 other students are poorly estimated, this value of k is used only for the example).

Using our SSI function this is accomplished as:

> (result <- SSI(mathScore ~ readScore + scienceScore,

+ tmp, k = 20, id = ID, na.action = na.omit))

Iteration 1 1 percent complete

Iteration 2 2 percent complete

Iteration 3 3 percent complete

Iteration 4 4 percent complete

Iteration 5 5 percent complete

Iteration 6 6 percent complete

Iteration 7 7 percent complete

Iteration 8 8 percent complete

Iteration 9 9 percent complete

Iteration 10 10 percent complete

Iteration 11 11 percent complete

Iteration 12 12 percent complete

Iteration 13 13 percent complete

Iteration 14 14 percent complete

Iteration 15 15 percent complete

Iteration 16 16 percent complete

Iteration 17 17 percent complete

Iteration 18 18 percent complete

Iteration 19 19 percent complete

Iteration 20 20 percent complete

Iteration 21 21 percent complete

Iteration 22 22 percent complete

Iteration 23 23 percent complete

Iteration 24 24 percent complete

Iteration 25 25 percent complete

Iteration 26 26 percent complete

Iteration 27 27 percent complete

Iteration 28 28 percent complete

Iteration 29 29 percent complete

Iteration 30 30 percent complete

Iteration 31 31 percent complete

Iteration 32 32 percent complete

Iteration 33 33 percent complete

Iteration 34 34 percent complete
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Iteration 35 35 percent complete

Iteration 36 36 percent complete

Iteration 37 37 percent complete

Iteration 38 38 percent complete

Iteration 39 39 percent complete

Iteration 40 40 percent complete

Iteration 41 41 percent complete

Iteration 42 42 percent complete

Iteration 43 43 percent complete

Iteration 44 44 percent complete

Iteration 45 45 percent complete

Iteration 46 46 percent complete

Iteration 47 47 percent complete

Iteration 48 48 percent complete

Iteration 49 49 percent complete

Iteration 50 50 percent complete

Iteration 51 51 percent complete

Iteration 52 52 percent complete

Iteration 53 53 percent complete

Iteration 54 54 percent complete

Iteration 55 55 percent complete

Iteration 56 56 percent complete

Iteration 57 57 percent complete

Iteration 58 58 percent complete

Iteration 59 59 percent complete

Iteration 60 60 percent complete

Iteration 61 61 percent complete

Iteration 62 62 percent complete

Iteration 63 63 percent complete

Iteration 64 64 percent complete

Iteration 65 65 percent complete

Iteration 66 66 percent complete

Iteration 67 67 percent complete

Iteration 68 68 percent complete

Iteration 69 69 percent complete

Iteration 70 70 percent complete

Iteration 71 71 percent complete

Iteration 72 72 percent complete

Iteration 73 73 percent complete

Iteration 74 74 percent complete

Iteration 75 75 percent complete

Iteration 76 76 percent complete

Iteration 77 77 percent complete

Iteration 78 78 percent complete

Iteration 79 79 percent complete

33



Iteration 80 80 percent complete

Iteration 81 81 percent complete

Iteration 82 82 percent complete

Iteration 83 83 percent complete

Iteration 84 84 percent complete

Iteration 85 85 percent complete

Iteration 86 86 percent complete

Iteration 87 87 percent complete

Iteration 88 88 percent complete

Iteration 89 89 percent complete

Iteration 90 90 percent complete

Iteration 91 91 percent complete

Iteration 92 92 percent complete

Iteration 93 93 percent complete

Iteration 94 94 percent complete

Iteration 95 95 percent complete

Iteration 96 96 percent complete

Iteration 97 97 percent complete

Iteration 98 98 percent complete

Iteration 99 99 percent complete

Iteration 100 100 percent complete

Call:

SSI.formula(formula = mathScore ~ readScore + scienceScore, data = tmp, id = ID, k = 20, na.action = na.omit)

Coefficients:

Z.scores: 0.3702140 -0.5768174 0.1264285 0.8572412 -0.6106486

Percentiles: 0.644 0.282 0.550 0.804 0.271

> summary(result)

Call:

SSI.formula(formula = mathScore ~ readScore + scienceScore, data = tmp,

id = ID, k = 20, na.action = na.omit)

Norms based on k = 20 similar students

> head(result$model.frame)

mathScore readScore scienceScore (id) z.score percentile

1 0.6306851 -1.1240005 -0.3559542 1 0.3702140 0.644

2 -0.5206163 -0.4841261 0.2663100 2 -0.5768174 0.282

3 -0.1782192 -0.4419129 0.8635799 3 0.1264285 0.550

4 1.4947961 -0.1840422 0.9463427 4 0.8572412 0.804

5 -0.4547110 -0.6806347 0.5748169 5 -0.6106486 0.271

6 0.1933395 -0.6646900 0.9304420 6 0.7278767 0.767

34



The function returns a dataframe that has for each student included in the analysis a
z-score and a percentile rank associated with that score. The help file describes the use of
the arguments to this function. Here I note only that the values of k cannot be larger than
the number of pairwise comparisons made.

16.10 Detecting Excessive Similarity in Student Response Pat-
terns: The cheat function

This function requires that we provide two forms of data: a “raw” data file and a “key” file.
The raw data are the student responses to each of the multiple choice items. For instance, if
there are four options for an items (1,2,3,4), the data would indicate which option student i
chose for item j. Second, the key file is a vector that contains the correct response for each
item presented.

For example, if the correct response to item 1 is 4, then the value in the key file associated
with this item would be a 1. It is best to illustrate with sample data as cnostructed below.

> NumStu <- 30

> NumItems <- 50

> dat <- matrix(0, nrow = NumStu, ncol = NumItems)

> set.seed(1234)

> for (i in 1:NumStu) {

+ dat[i, ] <- sample(1:4, NumItems, replace = TRUE)

+ }

> dat <- data.frame(dat)

> dat[(NumStu + 1), ] <- dat[NumStu, ]

> dat[(NumStu + 2), ] <- c(dat[(NumStu - 1), 1:25], dat[(NumStu -

+ 2), 26:50])

> set.seed(1234)

> key <- sample(1:4, NumItems, replace = TRUE)

Note, the key is a vector and its length must equal the number of columns in the data.
Like the other functions in this package, we also rely on the formula method here. However,
before we use the cheat function we must first estimate the probability of choosing the
wrong option for each test items. The function wrongProb can be used for this purpose as
demonstrated below.

> ff <- as.formula(paste("~", paste(names(dat), collapse = "+")))

> mm <- wrongProb(ff, data = dat, key = key)

Now that we have the data, the key file, and the probability of choosing the wrong option,
we simlpy call the cheat function as follows:

> (result <- cheat(ff, data = dat, key = key, wrongChoice = mm))

Ncheat TotalCompare

3 496
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> summary(result)

Number of Possible Cheatering Pairs: 3

Possible Cheating Pairs: S28:32 S29:32 S30:31

Number of Exact Matches: 29 31 50

Observed Z Values: 4.69 5.26 10.97

Critical Z: 4.11

Expected Number of Matches: 13.71275 13.86224 14.42306

Variance: 9.92999 9.991798 10.22801

The ouput from the summary tells us there are three students with response patterns
too similar to have occured by random chance alone. The possible cheating pairs are S28:32

S29:32 S30:31. This means that the students in rows 28 and 32 seem to have copied from
each other as did students in rows 29 and 32, and 30 and 31.

The output tells us that the observed number of exact matches between students 28 and
32 is 29. However, we would expect (from the statistical estimates) that they would only
have 13.71 exact matches between them. In this case, the observed number of exact matches
well exceeds the expected.

This function can be easily used to search through many classrooms (or any user defined
groups) through the use of the subset command. For instance, say we are interested in
examining all classrooms within a school district or a state. If multiple classrooms are to
be examined, I recommend using the wrongProb function sing the population data file (all
teachers) and then looping through all classrooms as follows:

> teachers <- unique(dat$TeacherName)

> result <- numeric(length(teachers))

> for (i in seq_along(teachers)) {

+ tmp <- cheat(~item1 + item2 + item3, dat, wrongChoice = mm,

+ key = key, rfa = "bsct", subset = TeacherName ==

+ teachers[i], na.action = NULL)

+ result[i] <- summary(tmp)$Ncheat

+ }

16.11 Equating with Stocking Lord

The SL function relies on the parameter estimates organized in a list in the same manner as
what is required for the irt.ability function. Since we are equating two tests, we require
two sets of item parameters organized as follows (for the 3PL):
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> params1 <- list(`3pl` = list(a = c(0.4, 1.7, 1.2), b = c(-1.1,

+ 0.9, 2.2), c = c(0.1, 0.2, 0.1)), gpcm = NULL)

> params2 <- list(`3pl` = list(a = c(0.5, 1.6, 1), b = c(-1.5,

+ 0.5, 2), c = c(0.1, 0.2, 0.1)), gpcm = NULL)

With our item parameters organized in the list, we simply estimate the intercept and
slope values as follows:

> SL(params1, params2, control = list(Q = 30, mu = 0, sigma = 1))

Stocking Lord Coefficients:

A parameter: 1.084583

B parameter: -0.5352729

Starting values from Mean/Sigma:

A parameter: 1.056315

B parameter: -0.3708769

This function puts the items from params1 on the same scale as params2. That is,
params1 items would be rescaled using the linking constants. So, for example, if I were
doing some vertical equating with this function and I want to link grade 3 and 4 with grade
3 as the base grade. I would apply the linking constants to the grade 4 items to place them
on the grade 3 scale. In that case, params1 would hold the grade 4 item parametersand
params2 would hold the grade 3 item parameters.

16.12 Levenshtein Distance Metric

The function stringMatch implements the procedures for matching two character strings as
previously described. Suppose we simply want the unnormalized edit distance between two
strings. we would simply use the function as:

> stringMatch("William Clinton", "Bill Clinton", normalize = "NO")

[1] 4

However, the LND (normalized) is often more useful for the application as we have
described for merging records together. This is found using the argument normalize =

’YES’ as:

> stringMatch("William Clinton", "Bill Clinton", normalize = "YES")

[1] 0.7333333

With pattern matching, it is sometimes needed to ignore differences in case, such as the
following:

> stringMatch("Bill Clinton", "bill Clinton", normalize = "YES",

+ case.sensitive = FALSE)

37



[1] 1

However, we can also consider differences in case as follows:

> stringMatch("Bill Clinton", "bill Clinton", normalize = "YES",

+ case.sensitive = TRUE)

[1] 0.9166667

Now, suppose we have merged two data files together and have computed the LND for
each record in the data comparing the names in the first dataset to the second. One question
we may now ask is, “what value of the LND indicates a bad merge?” We can answer this
question empirically and estimate the probability of a given LND.

These probabilities can be used in the same way researchers use alpha levels in other
areas of scientific practice. That is, define the level of risk one is willing to accept, say .001,
and find the LND associated with LND of .001. Then, use that LND as the cutpoint in the
data and retain records only if they exceed that LND.

The stringency of the LND for merge validation depends in large part on the specific
use of the data. For instance, if the results of any longitudinal analyses resulting from a
data merge are to play a role in school- or teacher-specific decisions resulting in sanctions
or rewards, then a stringent value of the LND should be preferred. Further research on this
topic could enlighten practitioners on optimal LND selection for high-stakes environments.

We can use the stringProbs function to estimate these probabilities as follows:

> dat <- data.frame(fname1 = c("Joseph McCall", "Paul Jones",

+ "Larry Everett", "Sam Thompson", "Sally Fields",

+ "Doug Carter", "Bill Friendly", "Tom Davison", "Frank Mann",

+ "Mary Jones"), fname2 = c("Joe McCall", "Paul Jones",

+ "Barry Everett", "Samuel Thompson", "Sally Fields",

+ "Douglas Carter", "William Friend", "Tommy Davison",

+ "Franklin Mann", "Cary Jones"))

> stringProbs(dat, N = 5)

Distance Prob CumProb

1 0.00 0.10 0.90

2 0.07 0.06 0.84

3 0.08 0.18 0.66

4 0.13 0.06 0.60

5 0.14 0.10 0.50

6 0.15 0.08 0.42

7 0.17 0.02 0.40

8 0.18 0.04 0.36

9 0.23 0.06 0.30

10 0.25 0.04 0.26

11 0.27 0.04 0.22

12 0.31 0.04 0.18
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13 0.33 0.02 0.16

14 0.38 0.04 0.12

15 0.70 0.02 0.10

16 0.77 0.02 0.08

17 0.79 0.02 0.06

18 0.80 0.02 0.04

19 0.90 0.02 0.02

20 0.92 0.02 0.00
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