
Chapter 1

Adding Models and Methods to Zelig

Zelig is highly modular. You can add methods to Zelig and, if you wish, release your programs
as a stand-alone package. By making your package compatible with Zelig, you will advertise
your package and help it achieve a widespread distribution.

This chapter assumes that your model is written as a function that takes a user-defined
formula and data set (see Chapter ??), and returns a list of output that includes (at the very
least) the estimated parameters and terms that describe the data used to fit the model. You
should choose a class (either S3 or S4 class) for this list of output, and provide appropriate
methods for generic functions such as summary(), print(), coef() and vcov().

To add new models to Zelig, you need to provide six R functions, illustrated in Figure
??. Let mymodel be a new model with class "myclass".

These functions are as follows:

1. zelig2mymodel() translates zelig() arguments into the arguments for mymodel().

2. mymodel() estimates your statistical procedure.

3. param.myclass() simulates parameters for your model. Alternatively, if your model’s
parameters consist of one vector with a correspondingly observed variance-covariance
matrix, you may write two simple functions to substitute for param.myclass():

(a) coef.myclass() to extract the coefficients from your model output, and

(b) vcov.myclass() to extract the variance-covariance matrix from your model.

4. qi.myclass() calculates expected values, simulates predicted values, and generates
other quantities of interest for your model (applicable only to models that take ex-
planatory variables).

5. plot.zelig.mymodel() to plot the simulated quantities of interest from your model.

6. A reference manual page to document the model. (See Section ??)

7. A function (describe.mymodel()) describing the inputs to your model, for use with
a graphical user interface. (See Section ??).

1

Figure 1.1: Six functions (solid boxes) to implement a new Zelig model

Estimate zelig()

(1) zelig2mymodel()

(2) mymodel()

Interpret sim()

(3) param.myclass()

(4) qi.myclass()

Plot

(6) plot.zelig.mymodel()

8. An optional demo script mymodel.R which contains commented code for the models
contained in the example section of your reference manual page.

1.1 Making the Model Compatible with Zelig

You can develop a model, write the model-fitting function, and test it within the Zelig
framework without explicit intervention from the Zelig team. (We are, of course, happy to
respond to any questions or suggestions for improvement.)

Zelig’s modularity relies on two R programming conventions:

1. wrappers, which pass arguments from R functions to other R functions or to foreign
function calls (such as C, C++, or Fortran functions); and

2. classes, which tell generic functions how to handle objects of a given class.

Specific methods for R generic functions take the general form: method.class(), where
method is the name of the generic procedure to be performed and class is the class of
the object. You may define, for example, summary.contrib() to summarize the output of
your model. Note that for S4 classes, the name of generic functions does not have to be
method.class() so long as users can call them via method().

2

To Work with zelig()

Zelig has implemented a unique method for incorporating new models which lets contribu-
tors test their models within the Zelig framework without any modification of the zelig()

function itself.
Using a wrapper function zelig2contrib() (where contrib is the name of your new

model), zelig2contrib() redefines the inputs to zelig() to work with the inputs you need
for your function contrib(). For example, if you type

zelig(..., model = "normal.regression")

zelig() looks for a zelig2normal.regression() wrapper in any environment (either at-
tached libraries or your workspace). If the wrapper exists, then zelig() runs the model.

If you have a pre-existing model, writing a zelig2contrib() function is quite easy.
Let’s say that your model is contrib(), and takes the following arguments: formula, data,
weights, and start. The zelig() function, in contrast, only takes the formula, data,
model, and by arguments. You may use the ... to pass additional arguments from zelig()

to zelig2contrib(), and <- NULL to omit the elements you do not need. Continuing the
Normal regression example from Section ??, let formula, model, and data be the inputs to
zelig(), M is the number of subsets, and ... are the additional arguments not defined in
the zelig() call, but passed to normal.regression().

zelig2normal.regression <- function(formula, model, data, M, ...) {

mf <- match.call(expand.dots = TRUE) # [1]

mf$model <- mf$M <- NULL # [2]

mf[[1]] <- as.name("normal.regression") # [3]

as.call(mf) # [4]

}

The bracketed numbers above correspond to the comments below:

1. Create a call (an expression to be evaluated) by creating a list of the arguments in
zelig2normal.regression(), including the extra arguments taken by normal.regression(),
but not by zelig(). All wrappers must take the same standardized arguments (formula,
model, data, and M), which may be used in the wrapper function to manipulate the
zelig() call into the normal.regression() call. Additional arguments to normal.regression(),
such as start.val are passed implicitly from zelig() using the ... operator.

2. Erase extraneous information from the call object mf. In this wrapper, model and M

are not used. In other models, these are used to further manipulate the call, and so
are included in the standard inputs to all wrappers.

3. Reassign the first element of the call (currently zelig2normal.regression) with the
name of the function to be evaluated, normal.regression().

4. Return the call to zelig(), which will evaluate the call for each multiply-imputed data
set, each subset defined in by, or simply data.

3

If you use an S4 class to represent your model, say mymodel, within zelig.default(),
Zelig’s internal function, create.ZeligS4(), automatically creates a new S4 class called
ZeligS4mymodel in the global environment with two additional slots. These include zelig,
which stores the name of the model, and zelig.data, which stores the data frame if
save.data=TRUE and is empty otherwise. These names are taken from the original call.
This new output inherits the original class mymodel so all the generic functions associated
with mymodel should still work. If you would like to see an example, see the models imple-
mented using the VGAM package, such as multinomial probit.

To Work with setx()

In the case of setx(), most models will use setx.default(), which in turn relies on the
generic R function model.matrix(). For this procedure to work, your list of output must
include:

� terms, created by model.frame(), or manually;

� formula, the formula object input by the user;

� xlevels, which define the strata in the explanatory variables; and

� contrasts, an optional element which defines the type of factor variables used in the
explanatory variables. See help(contrasts) for more information.

If your model output does not work with setx.default(), you must write your own
setx.contrib() function. For example, models fit to multiply-imputed data sets have out-
put from zelig() of class "MI". The special setx.MI() wrapper pre-processes the zelig()

output object and passes the appropriate arguments to setx.default().

Compatibility with sim()

Simulating quantities of interest is an integral part of interpreting model results. To use the
functionality built into the Zelig sim() procedure, you need to provide a way to simulate
parameters (called a param() function), and a method for calculating or drawing quantities
of interest from the simulated parameters (called a qi() function).

Simulating Parameters Whether you choose to use the default method, or write a model-
specific method for simulating parameters, these functions require the same three inputs:

� object: the estimated model or zelig() output.

� num: the number of simulations.

� bootstrap: either TRUE or FALSE.

The output from param() should be either

4

� If bootstrap = FALSE (default), an matrix with rows corresponding to simulations
and columns corresponding to model parameters. Any ancillary parameters should be
included in the output matrix.

� If bootstrap = TRUE, a vector containing all model parameters, including ancillary
parameters.

There are two ways to simulate parameters:

1. Use the param.default() function to extract parameters from the model and, if boot-
strapping is not selected, simulate coefficients using asymptotic normal approximation.
The param.default() function relies on two R functions:

(a) coef(): extracts the coefficients. Continuing the Normal regression example from
above, the appropriate coef.normal() function is simply:

coef.normal <- function(object)

object$coefficients

(b) vcov(): extracts the variance-covariance matrix. Again continuing the Poisson
example from above:

vcov.normal <- function(object)

object$variance

2. Alternatively, you can write your own param.contrib() function. This is appropriate
when:

(a) Your model has auxiliary parameters, such as σ in the case of the Normal distri-
bution.

(b) Your model performs some sort of correction to the coefficients or the variance-
covariance matrix, which cannot be performed in either the coef.contrib() or
the vcov.contrib() functions.

(c) Your model does not rely on asymptotic approximation to the log-likelihood. For
Bayesian Markov-chain monte carlo models, for example, the param.contrib()

function (param.MCMCzelig() in this case) simply extracts the model parameters
simulated in the model-fitting function.

Continuing the Normal example,

param.normal <- function(object, num = NULL, bootstrap = FALSE,

terms = NULL) {

if (!bootstrap) {

par <- mvrnorm(num, mu = coef(object), Sigma = vcov(object))

Beta <- parse.par(par, terms = terms, eqn = "mu")

5

sigma2 <- exp(parse.par(par, terms = terms, eqn = "sigma2"))

res <- cbind(Beta, sigma2)

}

else {

par <- coef(object)

Beta <- parse.par(par, terms = terms, eqn = "mu")

sigma2 <- exp(parse.par(par, terms = terms, eqn = "sigma2"))

res <- c(coef, sigma2)

}

res

}

Calculating Quantities of Interest All models require a model-specific method for cal-
culating quantities of interest from the simulated parameters. For a model of class contrib,
the appropriate qi() function is qi.contrib(). This function should calculate, at the bare
minimum, the following quantities of interest:

� ev: the expected values, calculated from the analytic solution for the expected value
as a function of the systematic component and ancillary parameters.

� pr: the predicted values, drawn from a distribution defined by the predicted values. If
R does not have a built-in random generator for your function, you may take a random
draw from the uniform distribution and use the inverse CDF method to calculate
predicted values.

� fd: first differences in the expected value, calculated by subtracting the expected values
given the specified x from the expected values given x1.

� ate.ev: the average treatment effect calculated using the expected values ev. This is
simply y - ev, averaged across simulations for each observation.

� ate.pr: the average treatment effect calculated using the predicted values pr. This is
simply y - pr, averaged across simulations for each observation.

The required arguments for the qi() function are:

� object: the zelig output object.

� par: the simulated parameters.

� x: the matrix of explanatory variables (created using setx()).

� x1: the optional matrix of alternative values for first differences (also created using
setx()). If first differences are inappropriate for your model, you should put in a
warning() or stop() if x1 is not NULL.

6

� y: the optional vector or matrix of dependent variables (for calculating average treat-
ment effects). If average treatment effects are inappropriate for your model, you should
put in a warning() or stop() if conditional prediction has been selected in the setx()
step.

Continuing the Normal regression example from above, the appropriate qi.normal()

function is as follows:

qi.normal <- function(object, par, x, x1 = NULL, y = NULL) {

Beta <- parse.par(par, eqn = "mu") # [1]

sigma2 <- parse.par(par, eqn = "sigma2") # [2]

ev <- Beta %*% t(x) # [3a]

pr <- matrix(NA, ncol = ncol(ev), nrow = nrow(ev))

for (i in 1:ncol(ev))

pr[,i] <- rnorm(length(ev[,i]), mean = ev[,i], # [4]

sigma = sd(sigma2[i]))

qi <- list(ev = ev, pr = pr)

qi.name <- list(ev = "Expected Values: E(Y|X)",

pr = "Predicted Values: Y|X")

if (!is.null(x1)){

ev1 <- par %*% t(x1) # [3b]

qi$fd <- ev1 - ev

qi.name$fd <- "First Differences in Expected Values: E(Y|X1)-E(Y|X)"

}

if (!is.null(y)) {

yvar <- matrix(rep(y, nrow(par)), nrow = nrow(par), byrow = TRUE)

tmp.ev <- yvar - qi$ev

tmp.pr <- yvar - qi$pr

qi$ate.ev <- matrix(apply(tmp.ev, 1, mean), nrow = nrow(par))

qi$ate.pr <- matrix(apply(tmp.pr, 1, mean), nrow = nrow(par))

qi.name$ate.ev <- "Average Treatment Effect: Y - EV"

qi.name$ate.pr <- "Average Treatment Effect: Y - PR"

}

list(qi=qi, qi.name=qi.name)

}

There are five lines of code commented above. By changing these five lines in the following
four ways, you can write qi() function appropriate to almost any model:

1. Extract any systematic parameters by substituting the name of your systematic pa-
rameter (defined in describe.mymodel()).

2. Extract any ancillary parameters (defined in describe.mymodel()) by substituting
their names here.

7

3. Calculate the expected value using the inverse link function and η = Xβ. (For the
normal model, this is linear.) You will need to make this change in two places, at
Comment [3a] and [3b].

4. Replace rnorm() with a function that takes random draws from the stochastic com-
ponent of your model.

1.2 Getting Ready for the GUI

Zelig can work with a variety of graphical user interfaces (GUIs). GUIs work by knowing
a priori what a particular model accepts, and presenting only those options to the user in
some sort of graphical interface. Thus, in order for your model to work with a GUI, you
must describe your model in terms that the GUI can understand. For models written using
the guidelines in Chapter ??, your model will be compatible with (at least) the Virtual Data
Center GUI. For pre-existing models, you will need to create a describe.*() function for
your model following the examples in Section ??.

1.3 Formatting Reference Manual Pages

One of the primary advantages of Zelig is that it fully documents the included models, in
contrast to the programming-orientation of R documentation which is organized by function.
Thus, we ask that Zelig contributors provide similar documentation, including the syntax
and arguments passed to zelig(), the systematic and stochastic components to the model,
the quantities of interest, the output values, and further information (including references).
There are several ways to provide this information:

� If you have an existing package documented using the .Rd help format, help.zelig()
will automatically search R-help in addition to Zelig help.

� If you have an existing package documented using on-line HTML files with static URLs
(like Zelig or MatchIt), you need to provide a PACKAGE.url.tab file which is a two-
column table containing the name of the function in the first column and the url in
the second. (Even though the file extension is .url.tab, the file should be a tab- or
space-delimited text file.) For example:

command http://gking.harvard.edu/zelig/docs/Main_Commands.html

model http://gking.harvard.edu/zelig/docs/Specific_Models.html

If you wish to test to see if your .url.tab files works, simply place it in your R
library/Zelig/data/ directory. (You do not need to reinstall Zelig to test your .url.tab
file.)

8

http://thedata.org
http://thedata.org

� Preferred method: You may provide a LATEX2ε .tex file. This document uses the
book style and supports commands from the following packages: graphicx, natbib,
amsmath, amssymb, verbatim, epsf, and html. Because model pages are incorporated
into this document using \include{}, you should make sure that your document com-
piles before submitting it. Please adhere to the following conventions for your model
page:

1. All mathematical formula should be typeset using the equation* and array,
eqnarray*, or align environments. Please avoid displaymath. (It looks funny
in html.)

2. All commands or R objects should use the texttt environment.

3. The model begins as a subsection of a larger document, and sections within the
model page are of sub-subsection level.

4. For stylistic consistency, please avoid using the description environment.

Each LATEX model page should include the following elements. Let contrib specify
the new model.

Help File Template

\subsection{{\tt contrib}: Full Name for [type] Dependent Variables}

\label{contrib}

\subsubsection{Syntax}

\subsubsection{Examples}

\begin{enumerate}

\item First Example

\item Second Example

\end{enumerate}

\subsubsection{Model}

\begin{itemize}

\item The observation mechanism, if applicable.

\item The stochastic component.

\item The systematic component.

\end{itemize}

\subsubsection{Quantities of Interest}

\begin{itemize}

\item The expected value of your distribution, including the formula

for the expected value as a function of the systemic component and

9

ancillary paramters.

\item The predicted value drawn from the distribution defined by the

corresponding expected value.

\item The first difference in expected values, given when x1 is specified.

\item Other quantities of interest.

\end{itemize}

\subsubsection{Output Values}

\begin{itemize}

\item From the {\tt zelig()} output stored in {\tt z.out}, you may

extract:

\begin{itemize}

\item

\item

\end{itemize}

\item From {\tt summary(z.out)}, you may extract:

\begin{itemize}

\item

\item

\end{itemize}

\item From the {\tt sim()} output stored in {\tt s.out}:

\begin{itemize}

\item

\item

\end{itemize}

\end{itemize}

\subsubsection{Further Information}

\subsubsection{Contributors}

10

