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1 Introduction

The purpose of the contrast package is to provide a standardized interface for testing linear com-
binations of parameters from common regression models. The syntax mimics the contrast.Design

function from the Design library. The contrast class has been extended in this package to linear
models produced using the functions lm, glm, gls, lme and geese. Other R functions with similar
purposes exist in R, but the interfaces are different and many require the user to specify the contrast
in terms of the parameter contrast coefficient vector. This package aims to simplify the process for
the user.

2 Contrasts

First, some notation:

n = number of samples

p = number of model parameters associated with fixed effects (excluding the intercept)

q = number of covariance parameters with random effects or correlations

Y = n× 1 response vector

X = n× (p+ 1) model matrix

β = model parameters associated with fixed effects

Σ = covariance matrix associated with the fixed effects

(1)

This package uses one degree of freedom Wald tests to calculate p–values for linear combinations
of parameters. For example, the basic linear model is of the form y = Xβ + ε, where the individual



The contrast Package

errors are assumed to be iid N(0, σ2). Ordinary least squares provides us with estimates β̂, σ̂2 and
Σ̂. Given a (p + 1) × 1 vector of constants, c, we can estimate a linear combination of parameters
λ = c′β by substituting the estimated parameter vectors: λ̂ = c′β̂. Using basic linear algebra,
V ar[λ] = c′Σc. The statistic generated for contrasts is

S =
c′λ

c′Σc
(2)

For linear models with normal errors, S ∼ Tn−p−1 and there is no uncertainty about the distribution
of the test statistic and the degrees of freedom. In other cases, this is not true. Asymptotics come
into play for several models and there is some ambiguity as to whether a t or normal distribution
should be used to compute p–values (See Harrell, 2001, Section 9,2 for a discussion). We follow the
conventions of each package: glm, gls and lme models use a t distribution and a normal distribution
is used for gee models. For models where there are extra covariance or correlation parameters, we
again follow the lead of the package. For gls model, the degrees of freedom are n− p, while in lme

models, it is n− p− q.

The remainder of this document shows two examples and how the contrast function can be
applied to different models.

2.1 Linear Models

As an example, a gene expression experiment was run to assess the effect of a compound under two
different diets: high fat and low fat. The main comparisons of interest are the difference between
the treated and untreated groups within a diet. The interaction effect was a secondary hypothesis.
For illustration, we only include the expression value of one of the genes.

A summary of the design is given in Table 1.

Table 1: A summary of the
diet experimental design

Diet Group Freq

high fat treatment 6
low fat treatment 6
high fat vehicle 6
low fat vehicle 6

The study design was a two–way factorial with n = 24. The cell means can be labeled as in
Table 2.
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Figure 1: An interaction plot for the diet gene expression experiment
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Table 2: The cells of the diet exper-
imental design

Diet
Low Fat High Fat

Vehicle A B
Compound C D

The reference cell used by R is cell D, the treated samples on a high fat diet.

The model used is

log Expression2 = β0

+ β1Vehicle Group

+ β2Low Fat Diet

+ β3Low Fat Diet and Vehicle Group (3)

so that p = 3. Substituting the appropriate coefficients into each cell produces the parameters in
Table 3.

Table 3: The parameter structure of the diet
experimental design

Diet
Low Fat High Fat

Vehicle β0 + β1 + β2 + β3 β0 + β1

Compound β0 + β2 β0

This means that

• β2 tests for diet effect in the treated samples (C −D)

• β1 tests for a compounds effect in the high fat diet samples (B −D)

Fitting the model specified by (3) using lm:

> lmFit1 <- lm(expression ~ (group + diet)^2, data = example1)

> summary(lmFit1)
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Call:
lm(formula = expression ~ (group + diet)^2, data = example1)

Residuals:
Min 1Q Median 3Q Max

-0.24517 -0.04667 -0.01450 0.02754 0.29283

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.03083 0.05218 153.903 < 2e-16 ***
groupvehicle -0.56867 0.07380 -7.706 2.07e-07 ***
dietlow fat -0.44633 0.07380 -6.048 6.52e-06 ***
groupvehicle:dietlow fat 0.28150 0.10436 2.697 0.0139 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1278 on 20 degrees of freedom
Multiple R-squared: 0.8447, Adjusted R-squared: 0.8215
F-statistic: 36.27 on 3 and 20 DF, p-value: 2.79e-08

To test the treatment effect in the high fat diet, D − B = −β1. This coefficient and hypothesis
test for the difference between treated and un–treated in the high fat diet group is in the row labeled
as groupvehicle in the output of summary.lm.

To compare the compound data and the vehicle data in the low fat diet group, Tables 2 and 3
can be used:

C − A = β0 + β2 − (β0 + β1 + β2 + β3)

= −β1 − β3

This hypothesis translates to testing β1 + β3 = 0, or a contrast using c = (0, 1, 0, 1). To get the
results of the difference between treated and un–treated in the low fat diet group, we (finally) use
the contrast function:

> highFatDiff <- contrast(lmFit1, list(diet = "low fat", group = "vehicle"),

+ list(diet = "low fat", group = "treatment"))

> print(highFatDiff, X = TRUE)

lm model parameter contrast

Contrast S.E. Lower Upper t df Pr(>|t|)
-0.2871667 0.0737955 -0.4411014 -0.1332320 -3.89 20 9e-04

Contrast coefficients:
(Intercept) groupvehicle dietlow fat groupvehicle:dietlow fat

0 1 0 1
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While the effect of treatment is significantly different when compared to vehicle for both diets,
the difference is more pronounced in the high fat diet.

Alternatively, both test can be done in the same call to contrast:

> eachTrmtEffect <- contrast(lmFit1, list(diet = levels(example1$diet),

+ group = "vehicle"), list(diet = levels(example1$diet), group = "treatment"))

> print(eachTrmtEffect, X = TRUE)

lm model parameter contrast

Contrast S.E. Lower Upper t df Pr(>|t|)
-0.5686667 0.0737955 -0.7226014 -0.4147320 -7.71 20 0e+00
-0.2871667 0.0737955 -0.4411014 -0.1332320 -3.89 20 9e-04

Contrast coefficients:
(Intercept) groupvehicle dietlow fat groupvehicle:dietlow fat

0 1 0 0
0 1 0 1

Also, we can use the type argument to compute a single treatment effect averaging over the
levels of the other factor:

> meanTrmtEffect <- contrast(lmFit1, list(diet = levels(example1$diet),

+ group = "vehicle"), list(diet = levels(example1$diet), group = "treatment"),

+ type = "average")

> print(meanTrmtEffect, X = TRUE)

lm model parameter contrast

Contrast S.E. Lower Upper t df Pr(>|t|)
1 -0.4279167 0.05218129 -0.5367649 -0.3190684 -8.2 20 0

Contrast coefficients:
(Intercept) groupvehicle dietlow fat groupvehicle:dietlow fat

1 0 1 0 0.5

Additionally, for ordinary linear regression models, there is an option to use sandwich estimates
for the covariance matrix of the parameters. See the sandwich package for more details. Going back
to our comparison of treated versus control in low fat samples, we can use the HC3 estimate in the
contrast.

> highFatDiffSAND <- contrast(lmFit1, list(diet = "low fat", group = "vehicle"),

+ list(diet = "low fat", group = "treatment"), covType = "HC3")

> print(highFatDiffSAND)
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lm model parameter contrast

Contrast S.E. Lower Upper t df Pr(>|t|)
-0.2871667 0.04467878 -0.380365 -0.1939684 -6.43 20 0

The HC3 covariance estimator was used.

The t–statistic associated with the sandwich estimate is -6.427 versus -3.891 using the traditional
estimate of the covariance matrix.

2.2 Generalized Linear Model

In this class of models, the distributional assumptions are expanded beyond the normal distribution
to the general exponential family. Also, these models are linear in the sense that they are linear on a
specified scale. The link function, denoted as η, is a function that defines how the linear predictor,
x′β, enters the model. While there are several approaches to testing for statistical differences
between models, such as the likelihood ratio or score tests, the Wald test is another method for
assessing the statistical significance of linear combinations of model parameters. The basic Wald–
type test uses the familiar statistic 2 to evaluate hypotheses. The distributional properties are
exact for the normal distribution and asymptotically valid for other distributions in the exponential
family. There are some issues with the Wald test (see Hauck and Donner, 1977). Whenever
possible, likelihood ratio or score statistics are preferred, but these tests cannot handle some types
of hypotheses, in which case the Wald test can be used.

For the previous example, it is customary to log transform gene expression data using a base of
2, we can illustrate contrasts in generalized linear models using the log (base e) link. In this case,
the actual model being fit is exp(x′β).

> glmFit1 <- glm(2^expression ~ (group + diet)^2, data = example1,

+ family = gaussian(link = "log"))

> summary(glmFit1)

Call:
glm(formula = 2^expression ~ (group + diet)^2, family = gaussian(link = "log"),

data = example1)

Deviance Residuals:
Min 1Q Median 3Q Max

-31.518 -6.363 -2.117 3.401 38.181

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.56925 0.02766 201.364 < 2e-16 ***
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groupvehicle -0.38839 0.04928 -7.882 1.47e-07 ***
dietlow fat -0.31104 0.04680 -6.647 1.80e-06 ***
groupvehicle:dietlow fat 0.18929 0.07730 2.449 0.0237 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 315.6268)

Null deviance: 43574.7 on 23 degrees of freedom
Residual deviance: 6312.5 on 20 degrees of freedom
AIC: 211.84

Number of Fisher Scoring iterations: 4

> highFatDiff <- contrast(glmFit1, list(diet = "low fat", group = "vehicle"),

+ list(diet = "low fat", group = "treatment"))

> print(highFatDiff, X = TRUE)

glm model parameter contrast

Contrast S.E. Lower Upper t df Pr(>|t|)
-0.1990949 0.05955574 -0.323326 -0.07486377 -3.34 20 0.0032

Contrast coefficients:
(Intercept) groupvehicle dietlow fat groupvehicle:dietlow fat

0 1 0 1

The coefficients and p–values are not wildly different given that the scale is slightly different (i.e.
log2 versus loge).

2.3 Generalized Least Squares

In a second gene expression example, stem cells were differentiated using a set of factors (such
as media types, cell spreads etc.). These factors were collapsed into a single cell environment
configurations variable. The cell lines were assays over three days. Two of the configurations were
only run on the first day and the other two were assays at baseline.

To get the materials, three donors provided materials. These donors provided (almost) equal
replication across the two experimental factors (day and configuration). Table 4 shows a summary
of the design.

The one of the goal of this experiment was to assess pre–specified differences in the configuration
at each time point. For example, the differences between configurations A and B at day one is of
interest. Also, the differences between configurations C and D at each time points were important.
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Table 4: A summary of the stem cell exper-
imental design

Day Configuration Number of Donors

1 A 3
2 A 0
4 A 0
1 B 3
2 B 0
4 B 0
1 C 3
2 C 2
4 C 3
1 D 3
2 D 3
4 D 3

Since there are missing cells in the design, it is not a complete two–way factorial. One way to
analyze this experiment is to further collapse the time and configuration data into a single variable
and then specify each comparison using this factor.

For example:

> example2$group <- factor(paste(example2$day, ":", example2$config,

+ sep = ""))

> print(table(example2$group))

1:A 1:B 1:C 1:D 2:C 2:D 4:C 4:D
3 3 3 3 2 3 3 3

Using this new factor, we fit a linear model to this one–way design. We should account for the
possible within–donor correlation. A generalized least square fit can do this, where we specify a
correlation structure for the residuals. A compound–symmetry (a.k.a. exchangeable) correlation
structure assumes that the within–donor correlation is constant.

The mdoel fit is:

> glsFit <- gls(expression ~ group, data = example2, corCompSymm(form = ~1 |

+ subject))

> summary(glsFit)
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Generalized least squares fit by REML
Model: expression ~ group
Data: example2

AIC BIC logLik
-6.19145 0.889052 13.09573

Correlation Structure: Compound symmetry
Formula: ~1 | subject
Parameter estimate(s):

Rho
0.882028

Coefficients:
Value Std.Error t-value p-value

(Intercept) 9.300000 0.09811971 94.78218 0.0000
group1:B 0.194667 0.04766072 4.08443 0.0010
group1:C -0.139333 0.04766072 -2.92344 0.0105
group1:D 0.036667 0.04766072 0.76933 0.4536
group2:C 0.062477 0.05402811 1.15638 0.2656
group2:D -0.012000 0.04766072 -0.25178 0.8046
group4:C 0.139667 0.04766072 2.93044 0.0103
group4:D 0.032000 0.04766072 0.67141 0.5122

Correlation:
(Intr) grp1:B grp1:C grp1:D grp2:C grp2:D grp4:C

group1:B -0.243
group1:C -0.243 0.500
group1:D -0.243 0.500 0.500
group2:C -0.214 0.441 0.441 0.441
group2:D -0.243 0.500 0.500 0.500 0.441
group4:C -0.243 0.500 0.500 0.500 0.441 0.500
group4:D -0.243 0.500 0.500 0.500 0.441 0.500 0.500

Standardized residuals:
Min Q1 Med Q3 Max

-1.5808727 -0.7266915 0.4295423 0.6085851 1.1552531

Residual standard error: 0.1699483
Degrees of freedom: 23 total; 15 residual

In this example, n = 23 and p = 8. This model estimates the residual variance and the within–
subject correlation, so q = 2. The default parameter estimates compare each group to the reference
cell (day 1, configuration A). The summary table provides one of the p–values that we are interested
in (configuration A vs. B at day 1). An example of obtaining the other p–values is shown below:
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> print(contrast(glsFit, list(group = "4:C"), list(group = "4:D")),

+ X = TRUE)

gls model parameter contrast

Contrast S.E. Lower Upper t df Pr(>|t|)
1 0.1076667 0.04766072 0.01425337 0.2010800 2.26 15 0.0392

Contrast coefficients:
(Intercept) group1:B group1:C group1:D group2:C group2:D group4:C group4:D

1 0 0 0 0 0 0 1 -1

2.4 Linear Mixed Models via lme

A similar model can be fit using a linear mixed model via the lme function. In this case, we can add
a random intercept attributable to the donors. This can produce the above compound symmetry
model, but here the within donor–correlation is constrained to be positive.

> lmeFit <- lme(expression ~ group, data = example2, random = ~1 |

+ subject)

> summary(lmeFit)

Linear mixed-effects model fit by REML
Data: example2

AIC BIC logLik
-6.19145 0.889052 13.09573

Random effects:
Formula: ~1 | subject

(Intercept) Residual
StdDev: 0.1596093 0.05837223

Fixed effects: expression ~ group
Value Std.Error DF t-value p-value

(Intercept) 9.300000 0.09811971 13 94.78218 0.0000
group1:B 0.194667 0.04766072 13 4.08443 0.0013
group1:C -0.139333 0.04766072 13 -2.92344 0.0119
group1:D 0.036667 0.04766072 13 0.76933 0.4555
group2:C 0.062477 0.05402811 13 1.15638 0.2683
group2:D -0.012000 0.04766072 13 -0.25178 0.8051
group4:C 0.139667 0.04766072 13 2.93044 0.0117
group4:D 0.032000 0.04766072 13 0.67141 0.5137
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Figure 2: An interaction plot for the stem cell gene expression experiment
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Correlation:
(Intr) grp1:B grp1:C grp1:D grp2:C grp2:D grp4:C

group1:B -0.243
group1:C -0.243 0.500
group1:D -0.243 0.500 0.500
group2:C -0.214 0.441 0.441 0.441
group2:D -0.243 0.500 0.500 0.500 0.441
group4:C -0.243 0.500 0.500 0.500 0.441 0.500
group4:D -0.243 0.500 0.500 0.500 0.441 0.500 0.500

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.48394624 -0.46168591 0.03798095 0.17092529 1.57981011

Number of Observations: 23
Number of Groups: 3

> print(contrast(lmeFit, list(group = "4:C"), list(group = "4:D")),

+ X = TRUE)

lme model parameter contrast

Contrast S.E. Lower Upper t df Pr(>|t|)
1 0.1076667 0.04766072 0.01425337 0.2010800 2.26 13 0.0417

Contrast coefficients:
(Intercept) group1:B group1:C group1:D group2:C group2:D group4:C group4:D

1 0 0 0 0 0 0 1 -1

Comparing this to the gls model results, the default coefficients have identical parameter esti-
mates, standard errors and test statistics, but their p–values are slightly different. This is due to
the difference in how the degrees of freedom are calculated between these models. The same is true
for the example contrast for the two models (15 versus 13 degrees of freedom).

2.5 Generalized Estimating Equations

Yet another way to fit a model to these data would be to use a generalized linear model–type
framework using normal errors and a log (base 2) link. To account for the within–donor variability,
a generalized estimating equation approach can be used. We use the geese function in the geepack
package.

> geeFit <- geese(2^expression ~ group, data = example2, id = subject,

+ family = gaussian(link = "log"), corstr = "exchangeable")

> summary(geeFit)
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Call:
geese(formula = 2^expression ~ group, id = subject, data = example2,

family = gaussian(link = "log"), corstr = "exchangeable")

Mean Model:
Mean Link: log
Variance to Mean Relation: gaussian

Coefficients:
estimate san.se wald p

(Intercept) 6.457722542 0.030377051 4.519262e+04 0.000000e+00
group1:B 0.135794630 0.064029822 4.497805e+00 3.393840e-02
group1:C -0.108696851 0.020631757 2.775630e+01 1.375997e-07
group1:D 0.029699999 0.038863285 5.840283e-01 4.447377e-01
group2:C 0.046523041 0.009171127 2.573302e+01 3.920608e-07
group2:D -0.019772151 0.023586890 7.026944e-01 4.018798e-01
group4:C 0.085212961 0.020805608 1.677453e+01 4.209444e-05
group4:D 0.007844728 0.014837328 2.795403e-01 5.970027e-01

Scale Model:
Scale Link: identity

Estimated Scale Parameters:
estimate san.se wald p

(Intercept) 3633.935 1316.328 7.621251 0.005768444

Correlation Model:
Correlation Structure: exchangeable
Correlation Link: identity

Estimated Correlation Parameters:
estimate san.se wald p

alpha 0.6081796 0.2021482 9.051568 0.002624697

Returned Error Value: 0
Number of clusters: 6 Maximum cluster size: 7

> print(contrast(geeFit, list(group = "4:C"), list(group = "4:D")),

+ X = TRUE)

geese model parameter contrast

Contrast S.E. Lower Upper Z df Pr(>|Z|)
1 0.07736823 0.02952906 0.01949233 0.1352441 2.62 NA 0.0088
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Contrast coefficients:
(Intercept) group1:B group1:C group1:D group2:C group2:D group4:C group4:D

1 0 0 0 0 0 0 1 -1

For this model, a simple Wald test is calculated. The contrast shows a more significant p–value
than the other models, partly due to the scale and partly due to the distributional assumptions
about the test statistic.

3 Fold changes

The contrast method also computes fold changes using the follow process:

1. For the two groups defined by the a and b arguments, the predicted outcomes are computed.
When the model objects is generated by either glm or geese, the linear predictor is calculated.

2. The two predicted values are optionally transformed by the fcFunc argument. For our gene
expression example, we might use function(u) 2^u, while for generalized linear models we
might use the inverse link function from the family object.

3. The predicted value for the a group is divided by the predicted value for the b group.

4. If the fcType argument is "simple", the ratio is returned as the fold change. fcType = "log"

returns the log (base e) of the ratio. If the type is "signed", a different calculation is used.
If the simple ratio is less than one, the negative reciprocal of the ratio is returned; otherwise
the fold change is equal to the simple ratio

The fold change results are contained in the output as foldchange. From the first example:

> eachTrmtEffect <- contrast(lmFit1, list(diet = levels(example1$diet),

+ group = "vehicle"), list(diet = levels(example1$diet), group = "treatment"),

+ fcfunc = function(u) 2^u)

> print(eachTrmtEffect, X = TRUE)

lm model parameter contrast

Contrast S.E. Lower Upper t df Pr(>|t|)
-0.5686667 0.0737955 -0.7226014 -0.4147320 -7.71 20 0e+00
-0.2871667 0.0737955 -0.4411014 -0.1332320 -3.89 20 9e-04

Contrast coefficients:
(Intercept) groupvehicle dietlow fat groupvehicle:dietlow fat

0 1 0 0
0 1 0 1
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> eachTrmtEffect$foldChange

[,1]
1 0.9291896
2 0.9621377
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