standardsPred {crmn}R Documentation

Predict effect for new data (or get fitted data)

Description

There is often unwanted variation in among the labeled internal standards which is related to the experimental factors due to overlapping peaks etc. This predicts this effect given a model of the overlapping variance. The prediction is given by XhatIS=XIS-XIS*B

Usage

standardsPred(model, newdata, factors, lg=TRUE, ...)

Arguments

model result from standardsFit
newdata an ExpressionSet or matrix with new data (or the data used to fit the model to get the fitted data)
factors the biological factors described in the pheno data slot if object is an ExpressionSet or a design matrix if object is a matrix.
lg logical indicating that the data should be log transformed
... passed on to standards and analytes

Value

the corrected data

Author(s)

Henning Redestig henning@psc.riken.jp

See Also

makeX, standardsFit

Examples

data(mix)
fullFit <- standardsFit(mix, "type", ncomp=3)
sfit <- standardsFit(mix[,-1], "type", ncomp=3)
pred <- standardsPred(sfit, mix[,1], "type")
cor(scores(sfit$fit$pc)[1,], scores(fullFit$fit$pc)[1,])
## could just as well have been done as
Y <- exprs(mix)
G <- model.matrix(~-1+mix$type)
isIS <- fData(mix)$tag == 'IS'
fullFit <- standardsFit(Y, G, ncomp=3, standards=isIS)
sfit    <- standardsFit(Y[,-1], G[-1,], ncomp=3,
standards=isIS)
pred <- standardsPred(sfit, Y[,1,drop=FALSE], G[1,,drop=FALSE], standards=isIS)
cor(scores(sfit$fit$pc)[1,], scores(fullFit$fit$pc)[1,])

[Package crmn version 0.0.11 Index]