
The doBy package

Søren Højsgaard

October 21, 2009

Contents

1 Introduction 2

2 Data 2

3 The summaryBy function 2
3.1 Basic usage . 2
3.2 Using predefined functions . 3
3.3 Copying variables out with the id argument 3
3.4 Statistics on functions of data . 4
3.5 Using ”.” on the left hand side of a formula 4
3.6 Using ”.” on the right hand side of a formula 4
3.7 Using “1” on the right hand side of the formula 5
3.8 Preserving names of variables using keep.names 5

4 The orderBy function 5

5 The splitBy function 6

6 The sampleBy function 6

7 The subsetBy function 6

8 The transformBy function 7

9 The lapplyBy function 7

10 Miscellaneous 7
10.1 The esticon function . 7
10.2 The firstobs / lastobs function 8
10.3 The which.maxn and which.minn functions 9

11 Final remarks 9

1

1 Introduction

The doBy package grew out of a need to calculate groupwise summary statistics
in a simple way, much in the spirit of PROC SUMMARY of the SAS system. We
have tried to keep the interface to the functions based on specifying formulas.

> library(doBy)

2 Data

The usage of the doBy package is based on the following datasets.

CO2 data The CO2 data frame comes from an experiment on the cold toler-
ance of the grass species Echinochloa crus-galli. To limit the amount of output
we modify names and levels of variables as follows

> data(CO2)

> CO2 <- transform(CO2, Treat = Treatment, Treatment = NULL)

> levels(CO2$Treat) <- c("nchil", "chil")

> levels(CO2$Type) <- c("Que", "Mis")

> CO2 <- subset(CO2, Plant %in% c("Qn1", "Qc1", "Mn1", "Mc1"))

Airquality data The airquality dataset contains air quality measurements
in New York, May to September 1973. The months are coded as 5, . . . , 9. To
limit the output we only consider data for two months:

> airquality <- subset(airquality, Month %in% c(5, 6))

Dietox data The dietox data are provided in the doBy package and result
from a study of the effect of adding vitamin E and/or copper to the feed of
slaughter pigs.

3 The summaryBy function

The summaryBy function is used for calculating quantities like “the mean and
variance of x and y for each combination of two factors A and B”. Examples
are based on the CO2 data.

3.1 Basic usage

For example, the mean and variance of uptake and conc for each value of Plant
is obtained by:

> myfun1 <- function(x) {

+ c(m = mean(x), v = var(x))

+ }

> summaryBy(conc + uptake ~ Plant, data = CO2, FUN = myfun1)

Plant conc.m conc.v uptake.m uptake.v

1 Qn1 435 100950 33.23 67.48

2 Qc1 435 100950 29.97 69.47

3 Mn1 435 100950 26.40 75.59

4 Mc1 435 100950 18.00 16.96

2

Defining the function to return named values as above is the recommended
use of summaryBy. Note that the values returned by the function has been
named as m and v.

If the result of the function(s) are not named, then the names in the output
data in general become less intuitive:

> myfun2 <- function(x) {

+ c(mean(x), var(x))

+ }

> summaryBy(conc + uptake ~ Plant, data = CO2, FUN = myfun2)

Plant conc.FUN1 conc.FUN2 uptake.FUN1 uptake.FUN2

1 Qn1 435 100950 33.23 67.48

2 Qc1 435 100950 29.97 69.47

3 Mn1 435 100950 26.40 75.59

4 Mc1 435 100950 18.00 16.96

3.2 Using predefined functions

It is possible use a vector of predefined functions. A typical usage will be by
invoking a list of predefined functions:

> summaryBy(uptake ~ Plant, data = CO2, FUN = c(mean, var, median))

Plant uptake.mean uptake.var uptake.median

1 Qn1 33.23 67.48 35.3

2 Qc1 29.97 69.47 32.5

3 Mn1 26.40 75.59 30.0

4 Mc1 18.00 16.96 18.9

Slightly more elaborate is

> mymed <- function(x) c(med = median(x))

> summaryBy(uptake ~ Plant, data = CO2, FUN = c(mean, var, mymed))

Plant uptake.mean uptake.var uptake.mymed

1 Qn1 33.23 67.48 35.3

2 Qc1 29.97 69.47 32.5

3 Mn1 26.40 75.59 30.0

4 Mc1 18.00 16.96 18.9

The naming of the output variables determined from what the functions
returns. The names of the last two columns above are imposed by summaryBy
because myfun2 does not return named values.

3.3 Copying variables out with the id argument

To get the value of the Type and Treat in the first row of the groups (defined by
the values of Plant) copied to the output dataframe we use the id argument:
as:

> summaryBy(conc + uptake ~ Plant, data = CO2, FUN = myfun1, id = ~Type +

+ Treat)

Plant conc.m conc.v uptake.m uptake.v Type Treat

1 Qn1 435 100950 33.23 67.48 Que nchil

2 Qc1 435 100950 29.97 69.47 Que chil

3 Mn1 435 100950 26.40 75.59 Mis nchil

4 Mc1 435 100950 18.00 16.96 Mis chil

3

3.4 Statistics on functions of data

We may want to calculate the mean and variance for the logarithm of uptake,
for uptake+conc (not likely to be a useful statistic) as well as for uptake and
conc. This can be achieved as:

> summaryBy(log(uptake) + I(conc + uptake) + conc + uptake ~ Plant,

+ data = CO2, FUN = myfun1)

Plant log(uptake).m log(uptake).v conc + uptake.m conc + uptake.v conc.m

1 Qn1 3.467 0.10168 468.2 104747 435

2 Qc1 3.356 0.11873 465.0 105297 435

3 Mn1 3.209 0.17928 461.4 105642 435

4 Mc1 2.864 0.06874 453.0 103157 435

conc.v uptake.m uptake.v

1 100950 33.23 67.48

2 100950 29.97 69.47

3 100950 26.40 75.59

4 100950 18.00 16.96

If one does not want output variables to contain parentheses then setting
p2d=TRUE causes the parentheses to be replaced by dots (“.”).

> summaryBy(log(uptake) + I(conc + uptake) ~ Plant, data = CO2,

+ p2d = TRUE, FUN = myfun1)

Plant log.uptake..m log.uptake..v conc + uptake.m conc + uptake.v

1 Qn1 3.467 0.10168 468.2 104747

2 Qc1 3.356 0.11873 465.0 105297

3 Mn1 3.209 0.17928 461.4 105642

4 Mc1 2.864 0.06874 453.0 103157

3.5 Using ”.” on the left hand side of a formula

It is possible to use the dot (”.”) on the left hand side of the formula. The dot
means “all numerical variables which do not appear elsewhere” (i.e. on the right
hand side of the formula and in the id statement):

> summaryBy(log(uptake) + I(conc + uptake) + . ~ Plant, data = CO2,

+ FUN = myfun1)

Plant log(uptake).m log(uptake).v conc + uptake.m conc + uptake.v conc.m

1 Qn1 3.467 0.10168 468.2 104747 435

2 Qc1 3.356 0.11873 465.0 105297 435

3 Mn1 3.209 0.17928 461.4 105642 435

4 Mc1 2.864 0.06874 453.0 103157 435

conc.v uptake.m uptake.v

1 100950 33.23 67.48

2 100950 29.97 69.47

3 100950 26.40 75.59

4 100950 18.00 16.96

3.6 Using ”.” on the right hand side of a formula

The dot (”.”) can also be used on the right hand side of the formula where it
refers to “all non–numerical variables which are not specified elsewhere”:

4

> summaryBy(log(uptake) ~ Plant + ., data = CO2, FUN = myfun1)

Plant Type Treat log(uptake).m log(uptake).v

1 Qn1 Que nchil 3.467 0.10168

2 Qc1 Que chil 3.356 0.11873

3 Mn1 Mis nchil 3.209 0.17928

4 Mc1 Mis chil 2.864 0.06874

3.7 Using “1” on the right hand side of the formula

Using 1 on the right hand side means no grouping:

> summaryBy(log(uptake) ~ 1, data = CO2, FUN = myfun1)

log(uptake).m log(uptake).v

1 3.224 0.1577

3.8 Preserving names of variables using keep.names

If the function applied to data only returns one value, it is possible to force that
the summary variables retain the original names by setting keep.names=TRUE.
A typical use of this could be

> summaryBy(conc + uptake + log(uptake) ~ Plant, data = CO2, FUN = mean,

+ id = ~Type + Treat, keep.names = TRUE)

Plant conc uptake log(uptake) Type Treat

1 Qn1 435 33.23 3.467 Que nchil

2 Qc1 435 29.97 3.356 Que chil

3 Mn1 435 26.40 3.209 Mis nchil

4 Mc1 435 18.00 2.864 Mis chil

4 The orderBy function

Ordering (or sorting) a data frame is possible with the orderBy function. Sup-
pose we want to order the rows of the the airquality data by Temp and by
Month (within Temp). This can be achieved by:

> x <- orderBy(~Temp + Month, data = airquality)

The first lines of the result are:

> head(x)

Ozone Solar.R Wind Temp Month Day

5 NA NA 14.3 56 5 5

18 6 78 18.4 57 5 18

25 NA 66 16.6 57 5 25

27 NA NA 8.0 57 5 27

15 18 65 13.2 58 5 15

26 NA 266 14.9 58 5 26

If we want the ordering to be by decreasing values of one of the variables,
we change the sign, e.g.

5

> x <- orderBy(~-Temp + Month, data = airquality)

> head(x)

Ozone Solar.R Wind Temp Month Day

42 NA 259 10.9 93 6 11

43 NA 250 9.2 92 6 12

40 71 291 13.8 90 6 9

39 NA 273 6.9 87 6 8

41 39 323 11.5 87 6 10

36 NA 220 8.6 85 6 5

5 The splitBy function

Suppose we want to split the airquality data into a list of dataframes, e.g.
one dataframe for each month. This can be achieved by:

> x <- splitBy(~Month, data = airquality)

> x

listentry Month

1 5 5

2 6 6

Hence for month 5, the relevant entry-name in the list is ’5’ and this part of
data can be extracted as

> x[["5"]]

Information about the grouping is stored as a dataframe in an attribute
called groupid and can be retrieved with:

> attr(x, "groupid")

Month

1 5

2 6

6 The sampleBy function

Suppose we want a random sample of 50 % of the observations from a dataframe.
This can be achieved with:

> sampleBy(~1, frac = 0.5, data = airquality)

Suppose instead that we want a systematic sample of every fifth observation
within each month. This is achieved with:

> sampleBy(~Month, frac = 0.2, data = airquality, systematic = T)

7 The subsetBy function

Suppose we want to take out those rows within each month for which the the
wind speed is larger than the mean wind speed (within the month). This is
achieved by:

> subsetBy(~Month, subset = Wind > mean(Wind), data = airquality)

Note that the statement Wind>mean(Wind) is evaluated within each month.

6

8 The transformBy function

The transformBy function is analogous to the transform function except that
it works within groups. For example:

> transformBy(~Month, data = airquality, minW = min(Wind), maxW = max(Wind),

+ chg = sum(range(Wind) * c(-1, 1)))

9 The lapplyBy function

This lapplyBy function is a wrapper for first splitting data into a list according
to the formula (using splitBy) and then applying a function to each element of
the list (using apply).

Suppose we want to calculate the weekwise feed efficiency of the pigs in the
dietox data, i.e. weight gain divided by feed intake.

> data(dietox)

> dietox <- orderBy(~Pig + Time, data = dietox)

> v <- lapplyBy(~Pig, data = dietox, function(d) c(NA, diff(d$Weight)/diff(d$Feed)))

> dietox$FE <- unlist(v)

Technically, the above is the same as

> dietox <- orderBy(~Pig + Time, data = dietox)

> wdata <- splitBy(~Pig, data = dietox)

> v <- lapply(wdata, function(d) c(NA, diff(d$Weight)/diff(d$Feed)))

> dietox$FE <- unlist(v)

10 Miscellaneous

10.1 The esticon function

Consider a linear model which explains Ozone as a linear function of Month and
Wind:

> data(airquality)

> airquality <- transform(airquality, Month = factor(Month))

> m <- lm(Ozone ~ Month * Wind, data = airquality)

> coefficients(m)

(Intercept) Month6 Month7 Month8 Month9 Wind

50.748 -41.793 68.296 82.211 23.439 -2.368

Month6:Wind Month7:Wind Month8:Wind Month9:Wind

4.051 -4.663 -6.154 -1.874

When a parameter vector β of (systematic) effects have been estimated,
interest is often in a particular estimable function, i.e. linear combination λ>β
and/or testing the hypothesis H0 : λ>β = β0 where λ is a specific vector defined
by the user.

Suppose for example we want to calculate the expected difference in ozone
between consequtive months at wind speed 10 mph (which is about the average
wind speed over the whole period).

The esticon function provides a way of doing so. We can specify several λ
vectors at the same time. For example

7

> Lambda

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 -1 0 0 0 0 -10 0 0 0

[2,] 0 1 -1 0 0 0 10 -10 0 0

[3,] 0 0 1 -1 0 0 0 10 -10 0

[4,] 0 0 0 1 -1 0 0 0 10 -10

> esticon(m, Lambda)

Confidence interval (WALD) level = 0.95

beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower.CI Upper.CI

1 0 1.2871 10.238 0.1257 106 0.90019 -19.010 21.585

2 0 -22.9503 10.310 -2.2259 106 0.02814 -43.392 -2.509

3 0 0.9954 7.094 0.1403 106 0.88867 -13.069 15.060

4 0 15.9651 6.560 2.4337 106 0.01662 2.959 28.971

In other cases, interest is in testing a hypothesis of a contrast H0 : Λβ = β0

where Λ is a matrix. For example a test of no interaction between Month and
Wind can be made by testing jointly that the last four parameters in m are zero
(observe that the test is a Wald test):

> Lambda

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 0 0 0 0 0 1 0 0 0

[2,] 0 0 0 0 0 0 0 1 0 0

[3,] 0 0 0 0 0 0 0 0 1 0

[4,] 0 0 0 0 0 0 0 0 0 1

> esticon(m, Lambda, joint.test = T)

X2.stat DF Pr(>|X^2|)

1 22.11 4 0.0001906

For a linear normal model, one would typically prefer to do a likelihood
ratio test instead. However, for generalized estimating equations of glm–type
(as dealt with in the packages geepack and gee) there is no likelihood. In this
case esticon function provides an operational alternative.

Observe that another function for calculating contrasts as above is the con-
trast function in the Design package but it applies to a narrower range of
models than esticon does.

10.2 The firstobs / lastobs function

To obtain the indices of the first/last occurences of an item in a vector do:

> x <- c(1, 1, 1, 2, 2, 2, 1, 1, 1, 3)

> firstobs(x)

[1] 1 4 10

> lastobs(x)

[1] 6 9 10

The same can be done on a data frame, e.g.

8

> firstobs(~Plant, data = CO2)

[1] 1 8 15 22

> lastobs(~Plant, data = CO2)

[1] 7 14 21 28

10.3 The which.maxn and which.minn functions

The location of the n largest / smallest entries in a numeric vector can be
obtained with

> x <- c(1:4, 0:5, 11, NA, NA)

> which.maxn(x, 3)

[1] 11 10 4

> which.minn(x, 5)

[1] 5 1 6 2 7

11 Final remarks

Credit is due to Dennis Chabot, Gabor Grothendieck, Paul Murrell, Jim Robison-
Cox and Erik Jørgensen for reporting various bugs and making various sugges-
tions to the functionality in the doBy package.

9

	Introduction
	Data
	The summaryBy function
	Basic usage
	Using predefined functions
	Copying variables out with the id argument
	Statistics on functions of data
	Using "." on the left hand side of a formula
	Using "." on the right hand side of a formula
	Using ``1'' on the right hand side of the formula
	Preserving names of variables using keep.names

	The orderBy function
	The splitBy function
	The sampleBy function
	The subsetBy function
	The transformBy function
	The lapplyBy function
	Miscellaneous
	The esticon function
	The firstobs / lastobs function
	The which.maxn and which.minn functions

	Final remarks

