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Two-sided Exact Tests and Matching
Confidence Intervals for Discrete Data
by Michael P. Fay

Abstract There is an inherent relationship
between two-sided hypothesis tests and confi-
dence intervals. A series of two-sided hypoth-
esis tests may be inverted to obtain the match-
ing 100(1-α)% confidence interval defined as the
smallest interval that contains all point null pa-
rameter values that would not be rejected at the
α level. Unfortunately, for discrete data there
are several different ways of defining two-sided
exact tests, and the most commonly used two-
sided exact tests are defined one way, while the
most commonly used exact confidence intervals
are inversions of tests defined a different way.
This can lead to inconsistencies where the ex-
act test rejects but the exact confidence interval
contains the null parameter value. The packages
exactci and exact2x2 provide several exact tests
with the matching confidence intervals avoiding
these inconsistencies as much as is possible. Ex-
amples are given for binomial and Poisson pa-
rameters and the paired and unpaired 2 × 2 ta-
bles.

Applied statisticians are increasingly being encour-
aged to report confidence intervals (CI) and param-
eter estimates along with p-values from hypothesis
tests. The htest class of the stats package is ide-
ally suited for these kinds of analyses, because all
the related statistics may be presented when the re-
sults are printed. For exact two-sided tests applied
to discrete data a test-CI inconsistency may occur:
the p-value may indicate a significant result at level
α while the associated 100(1-α)% confidence inter-
val may cover the null value of the parameter. Ide-
ally, we would like to present a unified report (Hirji,
2006), whereby the p-value and the confidence inter-
val match as much as is possible.

A motivating example

I was asked to help design a study to determine if
adding a new drug (albendazole) to an existing treat-
ment regimen (ivermectin) for the treatment of a par-
asitic disease (lymphatic filariasis) would increase
the incidence of a rare serious adverse event when
given in an area endemic for another parasitic dis-
ease (loa loa). There are many statistical issues re-
lated to that design (Fay et al., 2007), but here con-
sider a simple scenario to highlight the point of this
paper. A previous mass treatment using the existing
treatment had 2 out of 17877 experiencing the seri-

ous adverse event (SAE) giving an observed rate of
11.2 per 100,000. Suppose the new treatment was
given to 20,000 new subjects and suppose that 10
subjects experienced the SAE giving an observed rate
of 50 per 100,000. Assuming Poisson rates, an exact
test using poisson.test(c(2,10),c(17877,20000))
from the stats package (throughout we assume Ver-
sion 2.10.1 for the stats package) gives a p-value
of p = 0.0421 implying significant differences be-
tween the rates at the 0.05 level, but poisson.test
also gives a 95% confidence interval of (0.024,1.050)
which contains a rate ratio of 1, implying no signifi-
cant differences. We return to the motivating exam-
ple in the ’Poisson two-sample’ section below.

Overview of two-sided exact tests

We briefly review inferences using the p-value func-
tion for discrete data. For details see Hirji (2006) or
Blaker (2000). Suppose you have a discrete statistic t
with random variable T such that larger values of T
imply larger values of a parameter of interest, θ. Let
Fθ(t) = Pr[T ≤ t;θ] and F̄θ(t) = Pr[T ≥ t;θ]. Suppose
we are testing

H0 : θ ≥ θ0

H1 : θ < θ0

where θ0 is known. Then smaller values of t are more
likely to reject and if we observe t, then the proba-
bility of observing equal or smaller values is Fθ0(t)
which is the one-sided p-value. Conversely, the one-
sided p-value for testing H0 : θ ≤ θ0 is F̄θ0(t). We
reject when the p-value is less than or equal to the
significance level, α. The one-sided confidence inter-
val would be all values of θ0 for which the p-value is
greater than α.

We list 3 ways to define the two-sided p-value for
testing H0 : θ = θ0, which we denote pc, pm and pb
for the central , minlike , and blaker methods, re-
spectively:

central: pc is 2 times the minimum of the one-sided
p-values bounded above by 1, or mathemati-
cally, pc = min

{
1,2 ∗ min

(
Fθ0(t), F̄θ0(t)

)}
. The

name central is motivated by the associated
inversion confidence intervals which are cen-
tral intervals, i.e., they guarantee that the true
parameter has less than α/2 probability of be-
ing less (more) than the lower (upper) tail of the
100(1 − α)% confidence interval. This is called
the TST (twice the smaller tail method) by Hirji
(2006).
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minlike: pm is the sum of probabilities of outcomes
with likelihoods less than or equal to the ob-
served likelihood, or

pm = ∑
T: f (T)≤ f (t)

f (T)

where f (t) = Pr[T = t;θ0]. This is called the PB
(probability based) method by Hirji (2006).

blaker: pb combines the probability of the smaller
observed tail with the smallest probability of
the opposite tail that does not exceed that ob-
served tail probability. Blaker (2000) showed
that this p-value may be expressed as

pb = Pr [γ(T) ≤ γ(t)]

where γ(T) = min
{

Fθ0(T), F̄θ0(T)
}

. The
name blaker is motivated by Blaker (2000)
which comprehensively studies the associated
method for confidence intervals, although the
method had been mentioned in the literature
earlier, see e.g., Cox and Hinkley (1974), p. 79.
This is called the CT (combined tail) method by
Hirji (2006).

Note that pc ≥ pb for all cases, so that pb gives more
powerful tests than pc. On the other hand, although
generally pm < pc it is possible for pm > pc.

To calculate the associated confidence intervals,
we consider only regular cases where Fθ(t) and F̄θ(t)
are monotonic functions of θ (except perhaps the de-
generate cases where Fθ(t) = 1 or F̄θ(t) = 0 for all θ
when t is the maximum or minimum). In this case
the matching confidence intervals to the central test
are (θL,θU) which are solutions to:

α/2 = F̄θL(t)

and
α/2 = FθU (t)

except when t is the minimum or maximum at which
case the limit is set at the appropriate extreme of
the parameter space. The matching confidence in-
tervals for pm and pb require a more complicated al-
gorithm to ensure precision of the confidence limits
(Fay, 2009).

If matching confidence intervals are used then
test-CI inconsistencies will not happen for the
central method, and will happen very rarely for the
minlike and blaker methods; however, it is not rare
for pm or pb to be inconsistent with the central confi-
dence interval (Fay, 2009). We show some examples
of such inconsistencies in the examples below.

Binomial: one-sample

If X is binomial with parameters n and θ, then the
central exact interval is the Clopper-Pearson con-
fidence interval. These are the intervals given by

binom.test . The p-value given by binom.test is pm.
The matching interval to the pm was proposed by
Stern (1954) (see Blaker (2000)).

When θ0 = .5 we have pc = pm = pb, and there is
not a chance of a test-CI inconsistency even when the
confidence intervals are not inversions of the test as
is done in binom.test . When θ0 ̸= 0.5 there may be
problems. We explore these cases in the two-sample
Poisson case below, since the associated tests reduce
through conditioning to one-sample binomial tests.

Note that there are a theoretically proven set of
shortest confidence intervals for this problem. These
are called the Blyth-Still-Casella intervals in StatXact
(StatXact Procs Version 8). The problem with these
shortest intervals is that they are not nested, mean-
ing that one could have parameter values that are in-
cluded in the 90% confidence intervals but not in the
95% confidence intervals (see Theorem 2 of Blaker
(2000)). In contrast, the matching intervals of the
binom.exact function of the exactci will always give
nested intervals.

Poisson: one-sample

If X is Poisson with mean θ, then poisson.test
from stats gives the exact central confidence in-
tervals (Garwood, 1936), while the p-value is pm.
Thus, we can easily find a test-CI inconsistency:
poisson.test(5,r=1.8) gives a p-value of pm =
0.036 but the 95% central confidence interval of
(1.6,11.7) contains the null rate of 1.8. As θ gets large
the Poisson distribution may be approximated by the
normal distribution and these test-CI inconsistencies
are more rare.

The exactci package contains the poisson.exact
function, which has options for each of
the three methods and gives p-values with
matching confidence intervals. The code
poisson.exact(5,r=1.8,tsmethod="central")
gives confidence intervals the same as
above, but a p-value of pc = 0.073; while
poisson.exact(5,r=1.8,tsmethod="minlike")
gives the p-value the same as pm above, but 95%
confidence intervals of (2.0,11.8). Finally, using
tsmethod="blaker" we get pb = 0.036 (it is not un-
common for pb to equal pm) and 95% confidence
intervals of (2.0,11.5). We see that there is no test-CI
inconsistency when using the matching confidence
intervals.

Poisson: two-sample

For the control group, let the random variable of the
counts be Y0, the rate be λ0 and the population at
risk be m0. Let the corresponding values for the
test group be Y1, λ1 and m1. If we condition on
Y0 + Y1 = N then the distribution of Y1 is binomial
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with parameters N and

θ =
m1λ1

m0λ0 + m1λ1

This parameter may be written in terms of the ratio
of rates, ρ = λ1/λ2 as

θ =
m1ρ

m0 + m1ρ

or equivalently,

ρ =
m0θ

m1 (1 − θ)
. (1)

Thus, the null hypothesis that λ1 = λ0 is equivalent
to ρ = 1 or θ = m1/(m0 + m1), and confidence inter-
vals for θ may be transformed into confidence inter-
vals for ρ by equation 1. So the inner workings of
the poisson.exact function when dealing with two-
sample tests simply use the binom.exact function
and transform the results using equation 1.

Let us return to our motivating example (i.e.,
testing for differences between the observed rates
2/17877 and 10/20000). As in the other sections,
the results from poisson.test output pm but the
95% central confidence intervals which as we have
seen give a test-CI inconsistency. The poisson.exact
function avoids this test-CI inconsistency in this case
by giving the matching confidence interval, here are
the results of the three tsmethod options:

tsmethod p-value 95% confidence interval
central 0.061 (0.024, 1.050)
minlike 0.042 (0.035, 0.942)
blaker 0.042 (0.035, 0.936).

Analysis of 2 × 2 tables, unpaired

The 2 × 2 table may be created from many differ-
ent designs, consider first the designs where there
are two groups of observations with binary obser-
vations. If all the observations are independent,
even if the number in each group is not fixed in
advance, proper inferences may still be obtained by
conditioning on those totals (Lehmann and Romano,
2005). Fay (2009) studies the 2 × 2 table case
with independent observations, so we only briefly
give his motivating example here. The usual two-
sided application of Fisher’s exact test given by
fisher.test(matrix(c(4,11,50,569),2,2)) gives
pm = 0.032 using the minlike method, but 95% confi-
dence interval on the odds ratio of (0.92,14.58) using
the central method. As with the other examples,
the test-CI inconsistency disappears when we use ei-
ther the exact2x2 or fisher.exact function from the
exact2x2 package.

Analysis of 2 × 2 tables, paired

The case not studied in Fay (2009) is when the data
are paired, the case which motivates McNemar’s test.

For example, suppose you have twins randomized to
two treatment groups (Test and Control) then tested
on a binary outcome (pass or fail). There are 4 pos-
sible outcomes for each pair: (a) both twins fail, (b)
the twin in the control group fails and the one in the
test group passes, (c) the twin on the test group fails
and the one in the control group passes, or (d) both
twins pass. Here is a table where the of the number
of sets of twins falling in each of the four categories
are denoted a,b,c and d:

Test
Control Fail Pass
Fail a b
Pass c d

In order to test if the treatment is helpful, we use
only the number discordant pairs of twins, b and c,
since the other pairs of twins tell us nothing about
whether the treatment is helpful or not. McNemar’s
test is

Q ≡ Q(b, c) =
(b − c)2

b + c

which for large samples is distributed like a chi-
squared distribution with 1 degree of freedom. A
closer approximation to the chi-squared distribution
uses a continuity correction:

QC ≡ QC(b, c) =
(|b − c| − 1)2

b + c

In R this test is given by the function mcnemar.test .
Case-control data may be analyzed this way as

well. Suppose you have a set of people with some
rare disease (e.g., a certain type of cancer); these are
called the cases. For this design you match each case
with a control who is as similar as feasible on all
important covariates except the exposure of interest.
Here is a table:

Exposed
Not Exposed Control Case
Control a b
Case c d

For this case as well we can use Q or QC to test
for no association between cases/control status and
exposure status.

For either design, we can estimate the odds ratio
by b/c, which is the maximum likelihood estimate
(see Breslow and Day (1980), p. 165). Consider some
hypothetical data (chosen to highlight some points):

Test
Control Fail Pass
Fail 21 9
Pass 2 12
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When we perform McNemar’s test with the con-
tinuity correction we get p = 0.070 while without the
correction we get p = 0.035. Since the inferences are
on either side of the traditional 0.05 cutoff of signifi-
cance, it would be nice to have an exact version of the
test to be clearer about significance at the 0.05 level.
From the exact2x2 package using mcnemar.exact we
get the exact McNemar’s test p-value of p = .065. We
now give the motivation for the exact version of the
test.

After conditioning on the total number of dis-
cordant pairs, b + c, we can treat the problem as
B ∼ Binomial(b + c,θ), where B is the random vari-
able associated with b. Under the null hypothesis
θ = .5. We can tranform the parameter θ into an odds
ratio by

Odds Ratio ≡ ϕ =
θ

1 − θ
(2)

(Breslow and Day (1980), p. 166). Since it is easy
to perform exact tests on a binomial parameter, we
can perform exact versions of McNemar’s test inter-
nally by using the binom.exact function of the pack-
age exactci then transform the results into odds ra-
tios via equation 2. This is how the calculations are
done in the exact2x2 function when paired=TRUE .
The alternative and the tsmethod options work in
the way one would expect. So although McNemar’s
test was developed as a two-sided test, we can eas-
ily get one-sided exact McNemar-type Tests. For
two-sided tests we can get three different versions of
the two-sided exact McNemar’s test using the three
tsmethod options, but all three are equivalent to the
exact version of McNemar’s test (see the Appendix
in vignette("exactMcNemar") in exact2x2). Thus,
there is only one exact McNemar’s test. The differ-
ence between the tsmethod options is in the calcu-
lation of the confidence intervals. The default is to
use central confidence intervals so that the proba-
bility that the true parameter is less than the lower
100(1 − α)% confidence interval is guaranteed to be
less than or equal to α/2, and similarly for the upper
confidence interval. These guarantees on each tail
are not true for the minlike and blaker two-sided
confidence intervals; however, the latter give gener-
ally tighter confidence intervals.

Discussion

We have argued for using a unified report whereby
the p-value and the confidence interval are calcu-
lated from the same p-value function (also called the
evidence function or confidence curve). We have
provided several practical examples. Although the
theory of these methods have been extensively stud-
ied (Hirji, 2006), software has not been readily avail-
able. The exactci and exact2x2 packages fill this need.

Note that although these packages do provide a
unified report in the sense described in Hirji (2006),

it is still possible in rare instances to obtain test-CI in-
consistencies when using the minlike or blaker two-
sided methods (Fay, 2009). These rare inconsisten-
cies are an unavoidable problem due to the nature of
the problem and not to any deficit in the packages.
Additionally, those options can have other anoma-
lies (see Vos and Hudson (2008) for the single sam-
ple binomial case, and Fay (2009) for the two-sample
binomial case). For example, the data reject, but fail
to reject if an additional observation is added regard-
less of the value of the additional observation. Thus,
although the power of the blaker (or minlike ) two-
sided method is always (almost always) greater than
the central two-sided method, the central method
does avoid all test-CI inconsistencies and the previ-
ously mentioned anomalies.
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