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Abstract

This introduction to the R package fechner is based on Ünlü, Kiefer, and Dzhafarov
(2009), published in the Journal of Statistical Software.

Fechnerian scaling is a procedure for constructing a metric on a set of objects (e.g.,
colors, symbols, X-ray films, or even statistical models) to represent dissimilarities among
the objects “from the point of view” of a system (e.g., person, technical device, or even
computational algorithm) “perceiving” these objects. This metric, called Fechnerian, is
computed from a data matrix of pairwise discrimination probabilities or any other pairwise
measure which can be interpreted as the degree with which two objects within the set are
discriminated from each other. This paper presents the package fechner for performing
Fechnerian scaling of object sets in R. We describe the functions of the package. Fechnerian
scaling then is demonstrated on real and artificial data sets accompanying the package.
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1. Introduction

This paper discusses the R (R Development Core Team 2009) package fechner for Fechnerian
scaling (FS) of object (or stimulus) sets. It is available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=fechner. See Ünlü et al. (2009). FS
provides a theoretical framework for deriving so-called Fechnerian distances among objects
from discrimination probabilities or other measures showing the degree with which objects
are discriminated from each other by what is generically referred to as a perceiving system. In
addition to the Fechnerian distances, FS also identifies pairs of points of subjective equality,
geodesic chains, and geodesic loops. (These concepts are explained in detail in Section 2.)

This paper provides a brief and by necessity schematic overview of the main concepts of FS. For
detailed discussions of the various developments in this field refer to the following literature.
The latest and most general version of FS is the dissimilarity cumulation theory (Dzhafarov
and Colonius 2007; Dzhafarov 2008a,b). This theory extends the previously proposed theories
of FS in continuous (Dzhafarov and Colonius 2005a) and discrete and discrete-continuous
(Dzhafarov and Colonius 2005b) stimulus spaces. For historical background and the relation
of FS to traditional issues of psychophysics—for instance, Fechner (1860)’s original theory
and its experimental and theoretical critiques—see Dzhafarov (2001, 2002a,b) and Dzhafarov
and Colonius (1999, 2001). The finite, discrete version of FS, by far the most important for
practical applications, is discussed in detail in Dzhafarov and Colonius (2006a). As any data
set is necessarily finite, this is the version implemented in the package fechner and described
in the present paper.

http://CRAN.R-project.org/package=fechner
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Currently available software for FS includes FSCAMDS (Dzhafarov and Colonius 2009), which
runs on MATLAB (The MathWorks, Inc. 2007), and a MATLAB toolbox (Rach and Colonius
2008).
The paper is structured as follows. In Section 2, we briefly review the theory of FS. In Sec-
tion 3, we present the package fechner and describe the functions therein. In Section 4, we
demonstrate FS by applying the package’s functions to real and artificial data sets accompa-
nying the package.

2. Fechnerian scaling of object sets

Let {x1, . . . , xn} be a set of objects endowed with a discrimination function ψ (xi, xj). The
primary meaning of ψ (xi, xj) in FS is the probability with which xi is judged to be different
from (not the same as) xj . For example, a pair of colors (xi, xj) may be repeatedly presented
to an observer (or a group of observers), and ψ (xi, xj) may be estimated by the frequency
of responses “they are different”. Or (xi, xj) may be a pair of categories, and ψ (xi, xj)
the frequency of times a randomly chosen exemplar of category xi and a randomly chosen
exemplar of category xj are judged by a person to belong to different categories. Or (xi, xj)
may be a pair of statistical models, and ψ (xi, xj) the probability with which model xj fails
to fit (by some statistical criterion) a randomly chosen data set generated by model xi.
Possible examples are numerous, and more can be found in Dzhafarov and Colonius (2006b).
If warranted by substantive considerations, ψ (xi, xj) may represent nonlinearly transformed
probabilities, such as their logarithms or inverse normal integrals. Moreover, ψ need not
be related to probabilities at all: one can, for example, repeatedly present a pair of colors
(xi, xj) and ask an observer for a direct numerical estimate of “how dissimilar xi and xj are”
(say, on a scale from 0 to 10), in which case ψ (xi, xj) can be the median or mean of several
numerical estimates (this procedure is commonly used for the purposes of multidimensional
scaling, MDS; see, e.g., Kruskal and Wish 1978).
It is a well-established empirical fact that ψ (xi, xj), however obtained, is not a metric:

(1) ψ (xi, xi) is not always zero;

(2) moreover, ψ (xi, xi) and ψ (xj , xj) for i 6= j are not generally the same;

(3) ψ (xi, xj) is generally different from ψ (xj , xi);

(4) and the triangle inequality is not generally satisfied either, ψ (xi, xj) + ψ (xj , xk) may
very well be less than ψ (xi, xk).

The only data-analytic procedure other than FS which is aimed at imposing a metric on
{x1, . . . , xn} based on ψ is nonmetric MDS (e.g., Kruskal and Wish 1978). In its common
version MDS assumes that ψ (xi, xj) is some unknown monotone transformation of a “true”
distance d (xi, xj), and the MDS procedure searches for this transformation. No transforma-
tion, however, can deal with points (2) and (3) above, so the data have to be modified to
make MDS applicable: e.g., ψ (xi, xj) and ψ (xj , xi) are replaced with their averages, and all
“diagonal” values ψ (xi, xi) are averaged over as well. Even then MDS may not succeed in
finding the transformation, especially since the class of allowable metrics in MDS is usually
a priori restricted to Euclidean (or so-called Minkowskian) metrics in low-dimensional spaces
of real-component vectors.
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By contrast, FS deals directly with ψ-data subject to points 1–4 above, and it imposes no
a priori restrictions on the class of metrics d computed from ψ. The only property of the
ψ-data which is required by FS is regular minimality (RM). This property can be formulated
in three statements:

(A) for every xi there is one and only one xj such that ψ (xi, xj) < ψ (xi, xk) for all k 6= j
(this xj is called the Point of Subjective Equality, or PSE, of xi);

(B) for every xj there is one and only one xi such that ψ (xi, xj) < ψ (xk, xj) for all k 6= i
(this xi is called the PSE of xj);

(C) and xj is the PSE of xi if and only if xi is the PSE of xj .

Every data matrix in which the diagonal entry ψ (xi, xi) is smaller than all entries ψ (xi, xk)
in its row (k 6= i) and all entries ψ (xk, xi) in its column (k 6= i) satisfies RM in the simplest
(so-called canonical) form. In this simplest case every object xi is the PSE of xi. (Note that
regular maximality can be defined analogously, replacing “minimal” with “maximal”. This is
required when the ψ-data represent closeness values rather than differences; e.g., ψ (xi, xj)
may be the percent of times xi is judged to be the same as xj .)

It need not always be the case, however, that every xi is the PSE of xi. What makes any
(xi, xj) an ordered pair, different from (xj , xi), and what makes (xi, xi) a pair rather than
a single object, is the fact that xi and xj (in particular, xi and xi), when being compared,
necessarily differ in some property which “does not count” for the comparison. For example,
if xi and xj are two colors, they must occupy two different spatial locations, or one of them
may be presented first and the other second in time. This difference in spatial or temporal
locations (generically referred to as the difference between two observation areas) does not
enter in the comparison, but it may affect the way people perceive colors, and this in turn
may lead to ψ (xi, xi) being larger than ψ (xi, xj) for some distinct i and j (in the same way
as it may lead to ψ (xi, xj) 6= ψ (xj , xi)). The matrix of ψ-data


x1 x2 x3

x1 0.2 0.1 0.5
x2 0.7 0.3 0.2
x3 0.1 0.6 0.3


satisfies RM, with (x1, x2), (x2, x3), and (x3, x1) being pairs of mutual PSEs. Here, the
first symbol in every pair refers to a row object (all row objects belonging to one, the “first”,
observation area) and the second symbol refers to a column object (in the“second”observation
area).

Generalizing, given a matrix of ψ (xi, xj)-values with the rows and columns labeled by the
objects {x1, . . . , xn}, if (and only if) RM is satisfied, the row objects and column objects
can be presented in pairs of PSEs (x1, xk1) , (x2, xk2) , . . . , (xn, xkn), where (k1, k2, . . . , kn) is a
permutation of (1, 2, . . . , n). The FS procedure identifies and lists these PSE pairs and then
relabels them so that two members of the same pair receive one and the same label:

(x1, xk1) 7→ (a1, a1) , (x2, xk2) 7→ (a2, a2) , . . . , (xn, xkn) 7→ (an, an) .
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Thus, the matrix in the example above becomes
a3 a1 a2

a1 0.2 0.1 0.5
a2 0.7 0.3 0.2
a3 0.1 0.6 0.3

 =


a1 a2 a3

a1 0.1 0.5 0.2
a2 0.3 0.2 0.7
a3 0.6 0.3 0.1


in which each diagonal entry is minimal in its row and in its column. After this relabeling
the original function ψ (xi, xj) is redefined. We present it as pij = ψ̂(ai, aj) according to the
rule: if (xi, xki

) 7→ (ai, ai) and
(
xj , xkj

)
7→ (aj , aj), then pij = ψ

(
xi, xkj

)
(in particular,

pii = ψ (xi, xki
)). Note that pij is subject to the same properties 1–4 which were stipulated

above for ψ. Of course, in the simplest case (canonical form), when each xi is its own PSE, no
relabeling of objects is necessary, and pij coincides with ψ (xi, xj). (In the package fechner the
pairs of PSEs are assigned identical labels leaving intact the labeling of the rows and relabeling
the columns with their corresponding PSEs. This is referred to as canonical relabeling.)

FS imposes a metric G on the set {a1, . . . , an} in such a way that, if xi and xi′ are each
other’s PSEs relabeled into ai and xj and xj′ are each other’s PSEs relabeled into aj , then
G (xi, xj) = G

(
xi′ , xj′

)
= G (ai, aj). Here is how it is done. Let any finite sequence of objects,

not necessarily pairwise distinct, be called a chain. Any ordered pair of successive objects in
a chain is referred to as a link of the chain. For every pair of objects (ai, aj) we consider all
possible chains of objects (ai, ak1 , . . . , akr , aj), where (ak1 , . . . , akr) is a sequence chosen from
{a1, . . . , an} (and r may be 0, in which case the chain inserted between ai and aj is empty).
For each such a chain we compute what is called its psychometric length (of the first kind) as

L(1) (ai, ak1 , . . . , akr , aj) =
m=r∑
m=0

(
pkmkm+1 − pkmkm

)
,

where we put ai = ak0 and aj = akr+1 . (The quantities pkmkm+1 − pkmkm are referred
to as psychometric increments of the first kind.) Then we find a chain (which need not
be unique) with the minimal value of L(1), and take this minimal value of L(1) for the
quasidistance G

(1)
ij from ai to aj (referred to as the oriented Fechnerian distance of the

first kind). Quasidistance (quasimetric, or oriented metric) is a pairwise measure which
satisfies all metric properties except for symmetry: G

(1)
ij = 0 if and only if i = j, and

G
(1)
ij + G

(1)
jk ≥ G

(1)
ik , but G(1)

ij need not equal G(1)
ji . (The proof that G(1)

ij is a quasidistance
is straightforward. See Dzhafarov and Colonius (2007) for the most general version.) In FS
we symmetrize this quasimetric and transform it into a metric by computing G

(1)
ij + G

(1)
ji

and taking it for the “true” or “overall” Fechnerian distance Gij between ai and aj . Any
chain (ai, ak1 , . . . , akr , aj) with L(1) (ai, ak1 , . . . , akr , aj) = G

(1)
ij is called a geodesic chain (of

the first kind). Then the overall Fechnerian distance Gij (see Figure 1) is the psychometric
length (of the first kind) of a geodesic loop (ai, ak1 , . . . , akr , aj , al1 , . . . , als , ai), or equivalently
(aj , al1 , . . . , als , ai, ak1 , . . . , akr , aj).

Although this is not, strictly speaking, necessary for computations, it is worth noting that
we can also compute the psychometric length (of the second kind) of an arbitrary chain
(ai, ak1 , . . . , akr , aj) as

L(2) (ai, ak1 , . . . , akr , aj) =
m=r∑
m=0

(
pkm+1km − pkmkm

)
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Figure 1: A space consisting of 10 objects shown in an arbitrary spatial arrangement. The
psychometric length (of the first kind) L(1) (2, 3, 4, 5, 8, 6) of the chain connecting object 2
to object 6 (shown by solid arrows, representing the links of the chain) is computed as
(p23 − p22) + (p34 − p33) + (p45 − p44) + (p58 − p55) + (p86 − p88). If this chain is the shortest
among all chains connecting object 2 to object 6, then L(1) (2, 3, 4, 5, 8, 6) is taken to be the
oriented Fechnerian distance G

(1)
26 from 2 to 6. Analogously, L(1) (6, 9, 4, 1, 2) of the chain

connecting object 6 to object 2 (shown by dashed arrows, representing the links of the chain)
is (p69 − p66) + (p94 − p99) + (p41 − p44) + (p12 − p11). If this chain is the shortest among all
chains connecting object 6 to object 2, then L(1) (6, 9, 4, 1, 2) = G

(1)
62 . Together the two chains

form a loop with the total length L(1) (2, 3, 4, 5, 8, 6) + L(1) (6, 9, 4, 1, 2). If the two chains are
the shortest possible, then this sum is the overall Fechnerian distance G26 = G62 between
objects 2 and 6.

(where pkm+1km − pkmkm are called psychometric increments of the second kind), and then
define the quasidistance (the oriented Fechnerian distance of the second kind) G(2)

ij from ai to
aj as the minimal value of L(2) across all chains inserted between ai and aj . It makes, however,
no difference for the final computation of the overall Fechnerian distance Gij , because it can
be shown (see, e.g., Dzhafarov and Colonius 2006a) that

Gij = G
(1)
ij +G

(1)
ji = G

(2)
ij +G

(2)
ji .

It also holds (in fact, the equality above is an immediate consequence of this result) that the
L(1)–length of any loop (ai, ak1 , . . . , akr , aj , al1 , . . . , als , ai) equals the L(2)–length of the same
loop traversed in the opposite direction, (ai, als , . . . , al1 , aj , akr , . . . , ak1 , ai); see Figure 2.

The package fechner computes, among other quantities (see Section 3), the value of Gij

(referred to as G in the package) and identifies a geodesic loop (perhaps one of several possible)
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Figure 2: The same as Figure 1, but the loop comprised of the solid and dashed arrows (rep-
resenting the links of the loop) is now traversed in the opposite direction. The psychometric
length (of the second kind) L(2) (6, 8, 5, 4, 3, 2) is computed as (p86 − p66) + (p58 − p88) +
(p45 − p55) + (p34 − p44) + (p23 − p33). Analogously, L(2) (2, 1, 4, 9, 6) is (p12 − p22) +
(p41 − p11) + (p94 − p44) + (p69 − p99). It can be verified by rearranging terms that the length
L(2) (6, 8, 5, 4, 3, 2) + L(2) (2, 1, 4, 9, 6) of this loop is the same as the length of the loop com-
puted in Figure 1: L(1) (2, 3, 4, 5, 8, 6) + L(1) (6, 9, 4, 1, 2). As a consequence, if the loop in
Figure 1 is the shortest in the L(1) sense among all loops containing objects 2 and 6, then
so is in the L(2) sense the loop traversed in the opposite direction (and vice versa); hence
G

(1)
26 +G

(1)
62 = G

(2)
26 +G

(2)
62 = G26, the overall Fechnerian distance between objects 2 and 6.

for any pair of (relabeled) objects (ai, aj). It also compares the value of Gij to what we call a
generalized Shepardian index of dissimilarity Sij = pij +pji−pii−pjj (referred to as S–index
in the package).1 Note that Gij ≤ Sij for all (ai, aj). The comparison Gij versus Sij is of
interest because it shows how different the psychometric increments pij − pii are from an
oriented metric. The equality Gij = Sij holds for some (ai, aj) if and only if the geodesic loop
for (ai, aj) contains no other objects, i.e., if it is (ai, aj , ai). This means that pij−pii is smaller
than L(1) (ai, ak1 , . . . , akr , aj) for any chain inserted between ai and aj , and that pji − pjj is
smaller than L(1) (aj , al1 , . . . , als , ai) for any chain inserted between aj and ai. (The same
statement could be equivalently formulated in terms of psychometric increments and lengths
of the second kind, pji − pii and L(2).) It follows that if Gij = Sij for all (ai, aj), then the

1Shepard’s original index, in our notation, is S∗ij = ((1− pij) (1− pji)) / ((1− pii) (1− pjj)) (Shepard 1957,
1987). In FS Sij is called the generalized Shepardian index because it achieves the same goal as S∗ij : it
symmetrizes the matrix about the main diagonal and equalizes all diagonal entries (although their common
value in S∗ij is 1 rather than 0). The index S∗ij can be viewed as a special case of Sij if p in Sij is understood
as log (1− p) in log S∗ij .
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values of pij − pii form an oriented metric, and the computation of Gij is reduced to simple
symmetrization: (pij − pii) + (pji − pjj) = Sij . The greater the number of points (ai, aj) for
which Gij < Sij and the greater the differences Sij −Gij , the greater the “non-metricality” of
the psychometric increments pij−pii and the greater the “improvement” they need to become
metric. To quantify this “improvement” FS uses an ad hoc descriptive index

C =
2
∑

(Sij −Gij)
2∑

S2
ij +

∑
G2

ij

(referred to as C–index in the package).

3. The R package fechner

In this section we briefly describe the functions and relevant parts of the package. How to
actually use the software is demonstrated on examples in Section 4. The description of the
package will be short, primarily focusing on the main aspects of FS, those the users may
want to know first. Detailed information about these and other matters can be found in
the comprehensive documentation files for the package in R. We do not discuss source code
because the code in fechner is straightforward, intuitive, and generously commented.

The package fechner is implemented based on the S3 system. It comes with a namespace
and consists of three external functions (functions the package exports): the main func-
tion fechner, which provides the FS computations, and the functions check.regular and
check.data for verifying the required regular minimality/maximality property and the for-
mat of the data, respectively. The package also contains internal functions (functions not
exported by the package), which basically are plot, print, and summary methods for objects
of the class “fechner”. There are two real and two artificial data sets accompanying the
package fechner (they are described and analyzed in Section 4). The package’s functionality
and output closely follow that of the software FSCAMDS (see Section 1). It was tested on
real and artificial data and yielded the same results as obtained with FSCAMDS. Detailed
descriptions of the package’s functions and data sets can be found in the documentation files
in R (for an overview, type package?fechner).

The main function of the package is fechner:

fechner(X, format = c("probability.different", "percent.same", "general"),
compute.all = FALSE, check.computation = FALSE)

This function provides the FS computations (see Section 2), in two variants, termed “short”
and “long”. The short computation (compute.all = FALSE) returns a list, of the class
“fechner”, containing such information as the pairs of PSEs, the canonical representation
of the data in which regular minimality/maximality is satisfied in the canonical form and the
rows and columns are canonically relabeled, the S–index, and most importantly, the over-
all Fechnerian distances and geodesic loops. The long computation (compute.all = TRUE)
additionally yields intermediate results, such as the psychometric increments, the oriented
Fechnerian distances, and the geodesic chains, and it also allows to check the equality(

G
(1)
ij +G

(1)
ji

)
−
(
G

(2)
ij +G

(2)
ji

)
= 0
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(check.computation = TRUE). This equality must hold by theory (see Section 2).

The function fechner takes a square matrix or a data frame of numeric data (X; e.g., discrim-
ination probabilities), which must be in one of the following formats: probability-different,
percent-same, or general. The data have to be a matrix or a data frame with the same
number of rows and columns, and the data have to be numeric (no infinite, undefined, or
missing values are allowed). This is the general data format. The probability-different and
percent-same formats, in addition, require that the data lie in the intervals [0, 1] and [0, 100],
respectively. In the percent-same format, the data are automatically transformed prior to the
analysis using the transformation (100−X)/100.

The only property of the data which is required by FS is regular minimality/maximality (see
Section 2). For the percent-same format the data must satisfy regular maximality, for the
probability-different and general formats, regular minimality. This property can be checked
using the function check.regular:

check.regular(X, type = c("probability.different", "percent.same",
"reg.minimal", "reg.maximal"))

This function takes a square matrix or a data frame of numeric data (X; see fechner above)
and returns a list consisting of the canonical representation of the data, the pairs of PSEs, a
character string saying which check was performed (regular minimality or regular maximality),
and a logical indicating whether the original data are already in the canonical form. The values
"reg.minimal" and "reg.maximal" can be specified to force checking for regular minimality
and regular maximality, respectively, independent of the data set used.

The data format can be checked using the function check.data:

check.data(X, format = c("probability.different", "percent.same", "general"))

This function takes a square matrix or a data frame of numeric data (X; see fechner above)
and returns a matrix of the data with rows and columns labeled. The labeling is as follows:

• If the data are entered without any labeling of the rows and columns, check.data does
the labeling automatically: as a1, b1, . . . , z1, a2, b2, . . . , z2, etc., up to a9, b9, . . . , z9 if
the data size does not exceed 234× 234, or if the data size is larger than 234× 234, the
labeling is v1, v2, . . . , vN , where N×N is the dimensionality of the data (and N > 234).

• If the data are entered with either row or column labeling (but not both), the row or
column labels are assigned to the columns or rows, respectively.

• If the data are entered with row and column labeling, the same labeling must be used
for both. If this is the case, the labeling is adopted.

The interdependencies among these three functions of the package are as follows. The function
fechner calls the function check.regular, which in turn calls check.data. In particular,
in the function fechner the specified data format and regular minimality/maximality are
checked, and the rows and columns of the canonical representation matrix are canonically
relabeled based on the labeling provided by check.data. That is, using the check.data
labeling, the pairs of PSEs are assigned identical labels leaving intact the labeling of the rows
and relabeling the columns with their corresponding PSEs (see Section 2).
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The function fechner returns an object (x or object) of the class “fechner”, for which S3
plot, print, and summary methods are provided. The plot method

plot(x, level = 2)

graphs the results obtained in the FS analyses. It produces a scatterplot of the overall
Fechnerian distance G versus the S–index (for off-diagonal pairs of stimuli/objects), with
rugs added to the axes and jittered (amount = 0.01 of noise) to accommodate ties in the S–
index and G values. The diagonal line y = x is provided for a visual reference in estimating
the differences between the two types of values, as a measure of “non-metricality” of the
psychometric increments (see Section 2). The level of comparison (an integer greater than or
equal to 2) refers to the minimum number of links in geodesic loops for the pairs of stimuli
considered for the comparison. That is, choosing level n means that the comparison involves
only those S–index and G values that correspond to the geodesic loops containing not less
than n links. Normally the differences between the S–index and G values are greater for pairs
of objects having geodesic loops with more links (see Figures 3 and 4). The print method

print(x)

prints the main results obtained in the FS analyses, which are the overall Fechnerian distances
and the geodesic loops. The summary method

summary(object, level = 2)

outlines the results obtained in the FS analyses. It returns a list consisting of the pairs of
objects and their corresponding S–index and G values, the value of the Pearson correlation
coefficient between them, the value of the C–index (as an ad hoc measure of the “improve-
ment” the psychometric increments need to become metric; see Section 2), and the level
of comparison chosen. Detailed summary information such as individual object pairs and
their corresponding S–index and G values can be accessed through assignment. (Note that
the summary method returns an object of the class “summary.fechner”, for which a print
method is provided.)

4. Examples

The package fechner contains two real (morse and wish) and two artificial (regMin and
noRegMin) data sets. We use these data sets to demonstrate the functions of the package.

4.1. The data sets

morse: Rothkopf (1957)’s Morse code data of discrimination probabilities among 36 auditory
Morse code signals for the letters A,B, . . . , Z and the digits 0, 1, . . . , 9. The morse data frame
consists of 36 rows and 36 columns, representing the Morse code signals presented first and
second, respectively. Each number, an integer, in the data frame gives the percentage of
subjects who responded “same” (choosing between “same” and “different”) to the row signal
followed by the column signal. Each signal consists of a sequence of dots and dashes. A chart
of the Morse code letters and digits can be found in Wikipedia (2009).
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wish: Wish (1967)’s Morse-code-like data of discrimination probabilities among 32 auditory
Morse-code-like signals. The wish data frame consists of 32 rows and 32 columns, representing
the Morse-code-like signals presented first and second, respectively. Each number, a numeric,
in the data frame gives the relative frequency of subjects who responded “different” (choosing
between “same” and “different”) to the row signal followed by the column signal. The 32
Morse-code-like signals in Wish (1967)’s study were 5-element sequences T1P1T2P2T3, where
T stands for a tone (short or long) and P stands for a pause (1 or 3 units long). The stimuli
are labeled A,B, . . . , Z, 0, 1, . . . , 5, in the order they are presented in Wish (1967)’s article.

regMin and noRegMin: Artificial data of fictitious discrimination probabilities among 10 stim-
uli. The regMin and noRegMin data frames consist of 10 rows and 10 columns, representing
the fictitious stimuli presented in the first and second observation area, respectively. Each
number, a numeric, in the data frames is assumed to give the relative frequency of perceivers
responding “different” to the row stimulus followed by the column stimulus. These artificial
data sets are included as examples of a case when regular minimality holds in the non-canonical
form (regMin) and a case when regular minimality is violated (noRegMin). They differ only
in one entry: in the ninth row and the tenth column.

4.2. Checking data format and regular minimality/maximality

The data set morse is in the percent-same format, the wish data set is in the probability-
different format (the R output is omitted, for typographic reasons):

R> check.data(morse, format = "percent.same")

R> check.data(wish, format = "probability.different")

The following code describes an example matrix without labeling of the rows and columns,
in the general format; check.data does the labeling automatically:

R> (X <- ((-1) * matrix(1:16, nrow = 4)))

[,1] [,2] [,3] [,4]
[1,] -1 -5 -9 -13
[2,] -2 -6 -10 -14
[3,] -3 -7 -11 -15
[4,] -4 -8 -12 -16

R> check.data(X, format = "general")

a1 b1 c1 d1
a1 -1 -5 -9 -13
b1 -2 -6 -10 -14
c1 -3 -7 -11 -15
d1 -4 -8 -12 -16
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The data set wish satisfies regular minimality in the canonical form:

R> check.regular(wish)$check

[1] "regular minimality"

R> check.regular(wish)$in.canonical.form

[1] TRUE

The data set morse satisfies regular maximality in the canonical form:

R> check.regular(morse, type = "percent.same")$check

[1] "regular maximality"

R> check.regular(morse, type = "percent.same")$in.canonical.form

[1] TRUE

For typographic reasons only, in the remainder we consider small subsets of these stimulus
sets, chosen to form “self-contained” subspaces: a geodesic loop for any two elements of such a
subset (computed using the complete data set) is contained entirely within the subset. (Note
that the results obtained in the FS analyses restricted to self-contained subspaces are the same
as the results obtained from the entire stimulus sets. See below.) For instance, a particular
self-contained 10-code subspace of the 36 Morse codes consists of the codes for the letter B
and the digits 0, 1, 2, 4, 5, . . . , 9.

R> indices <- which(is.element(names(morse), c("B", c(0, 1, 2, 4:9))))

R> f.scal.morse <- fechner(morse, format = "percent.same")

R> f.scal.morse$geodesic.loops[indices, indices]

B 1 2 4 5 6 7 8 9 0
B B B1B B2B B46B B5B B6B B676B B67876B B6789B B06B
1 1B1 1 121 141 151 161 1781 181 191 101
2 2B2 212 2 242 252 262 272 282 2192 21092
4 46B4 414 424 4 454 46B4 474 4784 494 404
5 5B5 515 525 545 5 56B5 575 585 595 505
6 6B6 616 626 6B46 6B56 6 676 67876 678976 606
7 76B67 7817 727 747 757 767 7 787 7897 789097
8 876B678 818 828 8478 858 87678 878 8 898 8908
9 9B6789 919 9219 949 959 976789 9789 989 9 909
0 06B0 010 09210 040 050 060 097890 0890 090 0

This part of the morse data satisfies regular maximality in the canonical form:

R> (morse.subspace <- morse[indices, indices])
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B 1 2 4 5 6 7 8 9 0
B 84 12 17 40 32 74 43 17 4 4
1 5 84 63 8 10 8 19 32 57 55
2 14 62 89 20 5 14 20 21 16 11
4 19 5 26 89 42 44 32 10 3 3
5 45 14 10 69 90 42 24 10 6 5
6 80 15 14 24 17 88 69 14 5 14
7 33 22 29 15 12 61 85 70 20 13
8 23 42 29 16 9 30 60 89 61 26
9 14 57 39 12 4 11 42 56 91 78
0 3 50 26 11 5 22 17 52 81 94

R> check.regular(morse.subspace, type = "reg.maximal")$in.canonical.form

[1] TRUE

We see that the Morse code discrimination probability data violate constant self-dissimilarity.
For example, the Morse code for digit 1 was judged different from itself by 16% of respondents,
but only by 6% for digit 0. Symmetry is violated as well: The digits 4 and 5, for instance,
were judged to be different in 58% of cases when 4 was presented first, but in only 31% when
4 was presented second. Since the subspace is self-contained, the geodesic loops and overall
Fechnerian distances obtained in the FS analysis restricted to the self-contained subspace
are the same as the geodesic loops and overall Fechnerian distances obtained from the entire
stimulus set:

R> f.scal.subspace.mo <- fechner(morse.subspace, format = "percent.same")

R> identical(f.scal.morse$geodesic.loops[indices, indices],

+ f.scal.subspace.mo$geodesic.loops)

[1] TRUE

R> identical(f.scal.morse$overall.Fechnerian.distances[indices, indices],

+ f.scal.subspace.mo$overall.Fechnerian.distances)

[1] TRUE

Similarly, a self-contained 10-code subspace of the 32 Morse-code-like signals consists of the
codes for S,U,W,X, 0, 1, . . . , 5. This part of the wish data satisfies regular minimality in the
canonical form. Nonconstant self-dissimilarity and non-symmetry are also manifest in these
Morse-code-like signals data.

R> indices <- which(is.element(names(wish), c("S", "U", "W", "X", 0:5)))

R> (wish.subspace <- wish[indices, indices])

S U W X 0 1 2 3 4 5
S 0.06 0.16 0.38 0.45 0.35 0.73 0.81 0.70 0.89 0.97
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U 0.28 0.06 0.44 0.24 0.59 0.56 0.49 0.51 0.71 0.69
W 0.44 0.42 0.04 0.11 0.78 0.40 0.79 0.55 0.48 0.83
X 0.64 0.71 0.26 0.03 0.86 0.51 0.73 0.27 0.31 0.44
0 0.34 0.55 0.56 0.46 0.06 0.52 0.39 0.69 0.39 0.95
1 0.84 0.75 0.22 0.33 0.70 0.03 0.69 0.17 0.40 0.97
2 0.81 0.44 0.62 0.31 0.45 0.50 0.07 0.41 0.35 0.26
3 0.94 0.85 0.44 0.17 0.85 0.19 0.84 0.02 0.63 0.47
4 0.89 0.73 0.26 0.20 0.65 0.38 0.67 0.45 0.03 0.49
5 1.00 0.94 0.74 0.11 0.83 0.95 0.58 0.67 0.25 0.03

R> check.regular(wish.subspace, type = "reg.minimal")$in.canonical.form

[1] TRUE

The data set regMin satisfies regular minimality in non-canonical form and so is canonically
transformed and relabeled:

R> regMin

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 0.21 0.36 0.62 0.49 0.93 0.93 0.92 0.98 0.97 0.18
V2 0.34 0.20 0.43 0.68 0.74 0.94 0.90 0.80 0.92 0.51
V3 0.14 0.26 0.19 0.39 0.65 0.91 0.88 0.69 0.87 0.39
V4 0.19 0.36 0.21 0.15 0.68 0.94 0.86 0.69 0.86 0.46
V5 0.37 0.34 0.18 0.45 0.35 0.97 0.54 0.48 0.91 0.77
V6 0.63 0.73 0.22 0.55 0.21 0.79 0.51 0.56 0.94 0.90
V7 0.87 0.98 0.81 0.90 0.55 0.29 0.32 0.81 0.76 0.98
V8 0.91 0.86 0.54 0.86 0.28 0.56 0.27 0.52 0.67 0.94
V9 0.56 0.87 0.42 0.69 0.31 0.92 0.68 0.14 0.68 1.00
V10 0.93 0.90 0.82 0.88 0.76 0.75 0.44 0.49 0.27 0.98

R> check.regular(regMin)

$canonical.representation
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

V1 0.18 0.36 0.21 0.49 0.62 0.93 0.93 0.92 0.98 0.97
V2 0.51 0.20 0.34 0.68 0.43 0.74 0.94 0.90 0.80 0.92
V3 0.39 0.26 0.14 0.39 0.19 0.65 0.91 0.88 0.69 0.87
V4 0.46 0.36 0.19 0.15 0.21 0.68 0.94 0.86 0.69 0.86
V5 0.77 0.34 0.37 0.45 0.18 0.35 0.97 0.54 0.48 0.91
V6 0.90 0.73 0.63 0.55 0.22 0.21 0.79 0.51 0.56 0.94
V7 0.98 0.98 0.87 0.90 0.81 0.55 0.29 0.32 0.81 0.76
V8 0.94 0.86 0.91 0.86 0.54 0.28 0.56 0.27 0.52 0.67
V9 1.00 0.87 0.56 0.69 0.42 0.31 0.92 0.68 0.14 0.68
V10 0.98 0.90 0.93 0.88 0.82 0.76 0.75 0.44 0.49 0.27
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$canonical.transformation
observation.area.1 observation.area.2 common.label

1 V1 V10 V1
2 V2 V2 V2
3 V3 V1 V3
4 V4 V4 V4
5 V5 V3 V5
6 V6 V5 V6
7 V7 V6 V7
8 V8 V7 V8
9 V9 V8 V9
10 V10 V9 V10

$check
[1] "regular minimality"

$in.canonical.form
[1] FALSE

The data set noRegMin satisfies neither regular minimality nor regular maximality:

R> noRegMin

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 0.21 0.36 0.62 0.49 0.93 0.93 0.92 0.98 0.97 0.18
V2 0.34 0.20 0.43 0.68 0.74 0.94 0.90 0.80 0.92 0.51
V3 0.14 0.26 0.19 0.39 0.65 0.91 0.88 0.69 0.87 0.39
V4 0.19 0.36 0.21 0.15 0.68 0.94 0.86 0.69 0.86 0.46
V5 0.37 0.34 0.18 0.45 0.35 0.97 0.54 0.48 0.91 0.77
V6 0.63 0.73 0.22 0.55 0.21 0.79 0.51 0.56 0.94 0.90
V7 0.87 0.98 0.81 0.90 0.55 0.29 0.32 0.81 0.76 0.98
V8 0.91 0.86 0.54 0.86 0.28 0.56 0.27 0.52 0.67 0.94
V9 0.56 0.87 0.42 0.69 0.31 0.92 0.68 0.14 0.68 0.05
V10 0.93 0.90 0.82 0.88 0.76 0.75 0.44 0.49 0.27 0.98

R> check.regular(noRegMin, type = "reg.minimal")

regular minimality is violated: entry in row #1 and column #10
is minimal in row #1 but not in column #10

R> check.regular(noRegMin, type = "reg.maximal")

regular maximality is violated: entry in row #2 and column #6
is maximal in row #2 but not in column #6

4.3. The main function for Fechnerian scaling

The function fechner is the main function of the package and provides the FS computations.
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Fechnerian scaling analysis using the short computation

R> f.scal.subspace.wi <- fechner(wish.subspace,

+ format = "probability.different", compute.all = FALSE,

+ check.computation = FALSE)

R> f.scal.subspace.wi

overall Fechnerian distances:
S U W X 0 1 2 3 4 5

S 0.00 0.32 0.72 0.89 0.57 1.19 1.12 1.28 1.19 1.38
U 0.32 0.00 0.76 0.79 0.89 1.07 0.80 1.16 1.07 1.28
W 0.72 0.76 0.00 0.30 1.19 0.55 1.22 0.67 0.58 0.79
X 0.89 0.79 0.30 0.00 1.23 0.67 0.94 0.39 0.45 0.49
0 0.57 0.89 1.19 1.23 0.00 1.13 0.71 1.43 0.95 1.32
1 1.19 1.07 0.55 0.67 1.13 0.00 1.09 0.31 0.72 1.08
2 1.12 0.80 1.22 0.94 0.71 1.09 0.00 1.16 0.92 0.74
3 1.28 1.16 0.67 0.39 1.43 0.31 1.16 0.00 0.84 0.77
4 1.19 1.07 0.58 0.45 0.95 0.72 0.92 0.84 0.00 0.68
5 1.38 1.28 0.79 0.49 1.32 1.08 0.74 0.77 0.68 0.00

geodesic loops:
S U W X 0 1 2 3 4 5

S S SUS SWS SUXS S0S SU1WS SU2US SUX3XS SUX4WS SUX5XS
U USU U UWU UXWU US0SU U1WU U2U UX31WU UX4WU UX5XWU
W WSW WUW W WXW WS0W W1W W2XW WX31W WX4W WX5XW
X XSUX XWUX XWX X X0X X31WX X2X X3X X4X X5X
0 0S0 0SUS0 0WS0 0X0 0 010 020 0130 040 0250
1 1WSU1 1WU1 1W1 1WX31 101 1 121 131 141 135X31
2 2USU2 2U2 2XW2 2X2 202 212 2 232 242 252
3 3XSUX3 31WUX3 31WX3 3X3 3013 313 323 3 3X4X3 35X3
4 4WSUX4 4WUX4 4WX4 4X4 404 414 424 4X3X4 4 454
5 5XSUX5 5XWUX5 5XWX5 5X5 5025 5X3135 525 5X35 545 5

These are the overall Fechnerian distances and the geodesic loops for the self-contained 10-
code subspace of the 32 Morse-code-like signals. The geodesic chain from stimulus S to
stimulus 3, for instance, when using psychometric increments of the first kind, is (S,U,X, 3),
and that from 3 to S is (3, X, S). When using psychometric increments of the second kind,
the geodesic chains are the same, but should be read from right to left: (S,X, 3) from S to
3, and (3, X, U, S) from 3 to S. The oriented Fechnerian distances (psychometric lengths of
the geodesic chains) of the first and second kind are computed under the long computation
(discussed later).

The information provided using the short computation, an overview:

R> attributes(f.scal.subspace.wi)

$names
[1] "points.of.subjective.equality" "canonical.representation"
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[3] "overall.Fechnerian.distances" "geodesic.loops"
[5] "graph.lengths.of.geodesic.loops" "S.index"

$computation
[1] "short"

$class
[1] "fechner"

For instance, the S–index:

R> f.scal.subspace.wi$S.index

S U W X 0 1 2 3 4 5
S 0.00 0.32 0.72 1.00 0.57 1.48 1.49 1.56 1.69 1.88
U 0.32 0.00 0.76 0.86 1.02 1.22 0.80 1.28 1.35 1.54
W 0.72 0.76 0.00 0.30 1.24 0.55 1.30 0.93 0.67 1.50
X 1.00 0.86 0.30 0.00 1.23 0.78 0.94 0.39 0.45 0.49
0 0.57 1.02 1.24 1.23 0.00 1.13 0.71 1.46 0.95 1.69
1 1.48 1.22 0.55 0.78 1.13 0.00 1.09 0.31 0.72 1.86
2 1.49 0.80 1.30 0.94 0.71 1.09 0.00 1.16 0.92 0.74
3 1.56 1.28 0.93 0.39 1.46 0.31 1.16 0.00 1.03 1.09
4 1.69 1.35 0.67 0.45 0.95 0.72 0.92 1.03 0.00 0.68
5 1.88 1.54 1.50 0.49 1.69 1.86 0.74 1.09 0.68 0.00

Fechnerian scaling analysis using the long computation

An overview of the information computed under the long computation, which additionally
yields intermediate results and also allows for a check of computations:

R> f.scal.subspace.long.wi <- fechner(wish.subspace,

+ format = "probability.different", compute.all = TRUE,

+ check.computation = TRUE)

R> attributes(f.scal.subspace.long.wi)

$names
[1] "points.of.subjective.equality" "canonical.representation"
[3] "psychometric.increments.1" "psychometric.increments.2"
[5] "oriented.Fechnerian.distances.1" "overall.Fechnerian.distances.1"
[7] "oriented.Fechnerian.distances.2" "overall.Fechnerian.distances.2"
[9] "check" "geodesic.chains.1"
[11] "geodesic.loops.1" "graph.lengths.of.geodesic.chains.1"
[13] "graph.lengths.of.geodesic.loops.1" "geodesic.chains.2"
[15] "geodesic.loops.2" "graph.lengths.of.geodesic.chains.2"
[17] "graph.lengths.of.geodesic.loops.2" "S.index"

$computation
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[1] "long"

$class
[1] "fechner"

The oriented Fechnerian distances (psychometric lengths of the geodesic chains) of the first
kind are:

R> f.scal.subspace.long.wi$oriented.Fechnerian.distances.1

S U W X 0 1 2 3 4 5
S 0.00 0.10 0.32 0.28 0.29 0.60 0.53 0.52 0.56 0.69
U 0.22 0.00 0.38 0.18 0.51 0.50 0.43 0.42 0.46 0.59
W 0.40 0.38 0.00 0.07 0.69 0.36 0.75 0.31 0.35 0.48
X 0.61 0.61 0.23 0.00 0.83 0.41 0.70 0.24 0.28 0.41
0 0.28 0.38 0.50 0.40 0.00 0.46 0.33 0.60 0.33 0.52
1 0.59 0.57 0.19 0.26 0.67 0.00 0.66 0.14 0.37 0.59
2 0.59 0.37 0.47 0.24 0.38 0.43 0.00 0.34 0.28 0.19
3 0.76 0.74 0.36 0.15 0.83 0.17 0.82 0.00 0.43 0.45
4 0.63 0.61 0.23 0.17 0.62 0.35 0.64 0.41 0.00 0.46
5 0.69 0.69 0.31 0.08 0.80 0.49 0.55 0.32 0.22 0.00

The psychometric length of the first kind for the geodesic chain (S,U,X, 3) from S to 3 is
G

(1)
S3 = 0.52, and of the geodesic chain (3, X, S) from 3 to S it is G(1)

3S = 0.76. The psychometric
length G

(2)
S3 of the second kind for the geodesic chain (S,X, 3) from S to 3 is

R> f.scal.subspace.long.wi$oriented.Fechnerian.distances.2["S", "3"]

[1] 0.72

and the psychometric length G
(2)
3S of the geodesic chain (3, X, U, S) from 3 to S is

R> f.scal.subspace.long.wi$oriented.Fechnerian.distances.2["3", "S"]

[1] 0.56

The psychometric lengths of both kinds for the geodesic loops add up to the same value,
GS3 = 1.28, as they should, because by theory Gij = G

(1)
ij + G

(1)
ji = G

(2)
ij + G

(2)
ji . Geodesic

loops are concatenations of geodesic chains, hence the following equality of graph-theoretic
(edge/link based) lengths of chains and loops holds:

R> identical(f.scal.subspace.long.wi$graph.lengths.of.geodesic.chains.1 +

+ t(f.scal.subspace.long.wi$graph.lengths.of.geodesic.chains.1),

+ f.scal.subspace.long.wi$graph.lengths.of.geodesic.loops.1)

[1] TRUE
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The check for whether the overall Fechnerian distance of the first kind is equal to the overall
Fechnerian distance of the second kind; the difference, by theory a zero matrix (an excerpt is
shown):

R> f.scal.subspace.long.wi$check[[1]][1:4, 1:4]

S U W X
S 0.000000e+00 0.000000e+00 0.000000e+00 -1.110223e-16
U 0.000000e+00 0.000000e+00 0.000000e+00 1.110223e-16
W 0.000000e+00 0.000000e+00 0.000000e+00 5.551115e-17
X -1.110223e-16 1.110223e-16 5.551115e-17 0.000000e+00

Or, the logical indicating whether this matrix of differences is equal to the zero matrix up to
machine precision:

R> f.scal.subspace.long.wi$check[2]

$are.nearly.equal
[1] TRUE

4.4. Plotting and summarizing

Objects of the class “fechner” can be plotted or summarized. Plotting the “fechner” object
f.scal.morse (computed based on the entire Morse code data set; see Section 4.2)

R> plot(f.scal.morse)

gives the scatterplot shown in Figure 3.

Rugs are added to the axes and jittered (amount = 0.01 of noise) to accommodate ties in
the S–index and G values. The plot is for all (off-diagonal) pairs of stimuli (with geodesic
loops containing at least 2 links). If comparison is to involve only those S–index and G values
that have geodesic loops containing not less than 4 links, the argument level must be set 4
(Figure 4):

R> plot(f.scal.morse, level = 4)

The corresponding summary of the “fechner” object f.scal.morse, including the Pearson
correlation coefficient and the C–index:

R> summary(f.scal.morse)

number of stimuli pairs used for comparison: 630

summary of corresponding S-index values:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.180 1.260 1.520 1.435 1.670 1.850
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Figure 3: G versus S–index for Morse code data (all stimuli pairs).

summary of corresponding Fechnerian distance G values:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.180 1.203 1.490 1.405 1.660 1.850

Pearson correlation: 0.9764753

C-index: 0.002925355

comparison level: 2

In particular, detailed summary information can be accessed through assignment:

R> detailed.summary.mo <- summary(f.scal.morse, level = 4)

R> str(detailed.summary.mo, vec.len = 2)

List of 4
$ pairs.used.for.comparison:'data.frame': 63 obs. of 3 variables:
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Figure 4: G versus S–index for Morse code data (specific stimuli pairs).

..$ stimuli.pairs : chr [1:63] "B.J" "B.K" ...

..$ S.index : num [1:63] 1.41 1.17 1.58 1.17 1.51 ...

..$ Fechnerian.distance.G: num [1:63] 1.28 0.86 1.39 0.98 1.44 ...
$ Pearson.correlation : num 0.87
$ C.index : num 0.0219
$ comparison.level : num 4
- attr(*, "class")= chr "summary.fechner"

For instance, the pair of stimuli (B, J) and the corresponding S–index and G values can be
retrieved through:

R> detailed.summary.mo$pairs.used.for.comparison[1, ]

stimuli.pairs S.index Fechnerian.distance.G
1 B.J 1.41 1.28
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To verify that obtained information:

R> f.scal.morse$graph.lengths.of.geodesic.loops["B", "J"]

[1] 4

R> f.scal.morse$S.index["B", "J"]

[1] 1.41

R> f.scal.morse$overall.Fechnerian.distances["B", "J"]

[1] 1.28

5. Conclusion

We have introduced the package fechner for performing Fechnerian scaling (FS) of object
sets in the R language and environment for statistical computing and graphics. The package
has functions for checking the required data format and the regular minimality/maximality
property, a fundamental property of discrimination in psychophysics. The main function of
the package provides the FS computations, in the short and long variants. We have described
the functions of the package fechner and demonstrated their usage on real and artificial data
sets accompanying this package.

By contributing the package fechner in R we hope to have established a basis for computa-
tional work in this field. Interactive visualization and computational statistics approaches
can be utilized in post-Fechnerian analyses to make the results obtained by FS (e.g., over-
all Fechnerian distances and geodesic loops) more explorable and interpretable. We plan to
extend this package to incorporate such graphics as the matrix visualization, in particular
combined with seriation, the fluctuation diagram variant of the mosaic plot, or the parallel
coordinates plot—all as far as possible, interactively linked. (Available R packages providing
for such graphics are, for example, seriation, Hahsler, Hornik, and Buchta 2008, and iplots,
Urbanek and Wichtrey 2009.) These visualization approaches could be used in conjunction
with post-Fechnerian analyses based on multidimensional scaling (MDS) or cluster analysis
(CA), as described by Dzhafarov and Colonius (2006a). Various MDS, dimensionality reduc-
tion, and CA techniques, as well as such methods as principal component analysis or factor
analysis, are envisioned to be explored for their applicability to FS in greater depth. The
package fechner will have to be extended to incorporate such approaches.

The realization of FS in R may also prove valuable in applying current or conventional statis-
tical methods to the theory of FS. For instance, the determination of confidence regions (e.g.,
for overall Fechnerian distances) and hypothesis testing (e.g., testing for RM) in FS are likely
to be based on resampling methods. Such an endeavor would involve extensive computer
simulation, something R would be ideally suited for.
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