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ABSTRACT 

NP-complete problems fall into a continuum of difficulty and an attempt is made to identify characteristics 

that account for this difference. The approach is based on the NP-hard compatibility problem, also known 

as a system of inequations, which can used as a basis for characterizing the subset of NP-complete 

problems.  First a benchmark for difficulty is developed based on thenumber of iterations required to find 

an optimal solution. It is then attempted to relate the statistical properties of the problem to the difficulty 

level. The main area of focus is in relating the difficulty of solving a particular system to how constrained 

the system is. The results show that the least difficult problems are either highly overconstrained systems 

or highly underconstrained while the most difficult are in the region of being slightly underconstrained.  

1 INTRODUCTION 

This paper is concerned with the statistical characterization of NP-complete problems[4,5,7]. The 
approach is to start with the well-known compatibility problem[10] which is one of the best known 
examples of an NP-hard problem[3,6] and use that problem as a basis for studying the NP-complete 
problems. The compatibility problem can be stated as follows. Suppose there are n objects each of which 
are incompatible which some subset of the other n-1 objects. The problem is to partition all n objects into 
a set of k equivalence classes such that no object is incompatible with any other object in its equivalence 
class and where k is minimum over all possible partitionings. The problem is usually stated in terms of an 
adjacency matrix (A) of ones and zeros which summarizes the compatibility of each object (variable xi) 
with every other object (variable xj). A one in the (i,j) element of the A matrix indicates incompatibility 
between variables xi and xj while a zero represents compatibility.  A solution vector (s) is a mapping of 
each variable xi into an integer such that 1<= xi <= k while ensuring that xi ≠ xj when A[i,j] = 1.  This 
problem is also known as a system of inequations[1,8,9].  
 
One way of characterizing these systems of inequtions is to calculate the ones density (constraint density) 
of the A matrix.  This can be defined as the ratio of the number of ones in the A matrix to the maximum 
possible and this quantity varies between 0 and 100 percent. Another way is to calculate the number of 
zeros in the block diagonal of an optimal solution (if the rows and columns of the A matrix are permuted 
according to an optimal solution vector (s) the result is a block diagonal form of A). Yet another way is to 
look at the ratio of the number of zeros outside the block diagonal to the number of zeros inside the block 
diagonal (zo/zi).  For complete k-partite systems this ratio is zero. Complete k-partite systems are the least 
difficult of all compatibility problems as they can be solved by any algorithm with a success rate of 100%.  
Based on this observation, the most difficult problems might be related to the those having the highest 
ratio of zo/zi.  What is needed is a method to estimate the complexity of a given problem.  This can be 
done using an algorithm to find an optimal solution and using the number of iterations as a measure of  
complexity.   
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Figure 2.  Layers of NP-complete problem complexity 

2 Method for Estimating Complexity of NP-complete problems 

It has been shown[1] that a polynomial time algorithm similar to Gaussian elimination (Figure 1) can be 
used to solve the compatibility problem. The algorithm starts with a solution vector which has an initial 
value of s = (1,2,3,...n).  The algorithm squares the adjacency matrix A and finds the maximum value for 
pairs of variables that can be combined (i.e., A[i,j]=0). It then combines variables xi and xj by taking the 
constraints that are in xj but not in xi and adding them to xi. Then it updates the solution vector s[j]=s[i] 
and eliminates variable xj as in Gaussian elimination. The matrix A is reduced by one in dimension each 
time a variable is eliminated. The main difference with Gaussian elimination is that the algorithm ineq 
uses logical OR instead of subtraction and the decision function is f(A)=max(A2).  Note the algorithm ineq 
is recursive and stops when there is no longer any variables left to combine.  
 
ineq(A) 
ij<-max(A2) 
xi=xi|xj 
s[j]=s[i] 
A=A[-j,-j] 
ineq(A) 
 
Figure 1  Algorithm for solving systems of inequations 
 
The algorithm ineq was used to solve randomly generated systems across the full range of constraint 
densities from 0% to 100% for 5000 systems of n=100 variables and optimal solution cardinalities ranging 
from 1 to 100. The result is shown in Figure 2.  The points represent systems where optimal solutions 
were found and the asterisks represent systems where an optimal solution was not found. A system of 
inequations in Figure 2 is represented by its constraint density and solution cardinality.  
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Figure 3. Complexity for optimal solution cardinality k=3 (NP-complete problems) 

 
One way to interpret Figure 2 is that the ineq algorithm has partitioned the system space into two layers of 
difficulty. The more difficult problems represented by the asterisks in Figure 2 have themselves been 
separated into two parts, one less difficult and one more difficult. The less difficult part is solved by ineq 
itself and the more difficult part has been reduced to a search of the very beginning of the decision tree.  
The area covered by points and asterisks in Figure 2 represent the entire NP-hard compatibility problem 
space while the subset of NP-complete problems is represented by the vertical line at k=3 which has a 
range of constraint density from 0 to 2/3. 
 
Figure 3 shows the result of using ineq on 1000 systems of k=3 and n=100 (i.e., the subset of NP-complete 
problems).  In Figure 3 the constraint density is on the horizontal axis while the vertical axis represents 
problem difficulty which is also referred to as problem complexity or the number of iterations of the 
algorithm before reaching an optimal solution. The algorithm solved 100% of the problems although some 
took longer than others. The most difficult problems were located in a small range of constraint densities 
between about 4 and 8 percent. Outside of that region the algorithm found a solution 100% of the time in 0 
iterations. Inside the region the algorithm's success rate percentage for 0 iterations dropped to about 65%. 
Most of systems were solved in less than about 20 iterations while one required about 300 iterations, a 
rather long-tailed distribution (see Figure 5 for a histogram of this distribution for a sample of 200 systems 
taken in the 4-8% constraint density region). 
 
A possible explanation for this behaviour is as follows. For high constraint densities there is only one 
optimal solution and all systems are close in some sense to complete k-partite which are the least difficult 
to solve. For very low constraint densities there are a very large number of optimal solutions so it is 
difficult for the decision function to make a mistake.  A system can be called perfectly constrained if it has 
one optimal solution and the removal of a single constraint would lead to more than one optimal solution. 
Originally it was suspected that these perfectly constrained systems were the most difficult to solve.  
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Figure 4. Ensemble of constraint density trajectories 
 
However, tests run on systems that are difficult to solve has shown that the most difficult problems appear 
to be those that are not perfectly constrained but somewhat underconstrained. It is now believed that the 
most difficult problems may be in an area where the ratio of the number of suboptimal solutions of 
cardinality k+1 to optimal solutions of cardinality k reaches a maximum. Intuitively this can be explained 
by considering that the most difficult problems (for k=3) have a fairly low one's density (between about 4 
and 8 percent).  This means that average number of constraints for each variable is also very small 
(somewhere between 4 and 8 since n=100).  In this situation it is very difficult for any decision function to 
determine which pair of variables to combine to create the basis of an equivalence class. The entire system 
looks like some sort of a "plasma" of low degree vertices each of which look like they could belong to 
many different equivalence classes.    
 
It has already been stated that the ineq algorithm works by elimination of variables. Each time the matrix 
A is reduced in dimension by one it changes in constraint density until no more variables can be combined 
(where the constraint density is 100%). The constraint density is easily calculated at each step of the ineq 
algorithm and the result is shown in Figure 4 for an ensemble of 30 NP-complete systems of optimal 
solution cardinality k=3. Two different types of trajectories are seen. Below densities of 4% there are 
relatively few constraints (ones) in the system and eliminating variables reduces both ones and zeros about 
the same rate. This occurs until a certain point is reached where the constraint density increases rapidly up 
to a final value of 100%. For systems with constraint density above 8% the constraint density usually 
decreases until a certain point and then increases up to a final value of 100%. These high constraint 
density systems also appear to merge almost into a single trajectory when beginning their ascent phase.    
 
The ineq algorithm works by reducing ones density in regions significantly above 8% thus leading in the 
direction towards theoretically easier problems.  Note that for n=100, k=3 it requires the decision function 
f(A) = max(A2) to make 97 consecutive correct decisions to find an optimal solution. This is represented 
by the number of iterations variable on the horizontal axis. Any mistake, if made, is most likely to be in 
the first few steps. After that it is believed that there are usually so many suboptimal solutions of 
cardinality k+1 that it is unlikely to make more than one error in the solution of a single problem.  
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Figure 5  Complexity Distribution in 4-8% Region  
 
There is a technique that can find which first few decisions to make to find an optimal solution with 
relative efficiency. It is based on the fact that inside the region of constraint density between 4% and 8% 
the success rate of ineq does not decrease to zero. This means that somewhere near every system A that 
cannot be solved directly is another equivalent system A' that can be solved directly. In many cases  
combining a single pair of variables is enough to move the original system to a system that is in the 
solution space of the ineq algorithm. This leads to the equivalence class subset algorithm[1][2] (Figure 6).   
 
     find a solution s to system A using ineq 
     choose a subset of variable associations from  s     
     combine these variables  to create the A' matrix  
     find a solution to A' using the ineq algorithm 
 

Figure 6  Equivalence Class Subset Algorithm 
 
This equivalence class subset algorithm in Figue 6 is based on the observation that any solution vector s 
will partition the zeros of the A matrix into two groups: those inside the block diagonal and those outside 
the block diagonal. Solutions with more zeros on the main diagonal are more likely to be closer to an 
optimal solution.  Each time a solution is found the number of zeros on the block diagonal are calculated.  
If this number is more than any previous solution then use this solution s to take the next subset.  If not 
continue taking subsets from the previous solution vector.  
 
The equivalence class subset algorithm was used to focus only on the region in between the 4 and 8 
percent constraint densities.  A random sample of 200 systems was generated in this constraint density 
range and the range of complexity is shown in Figure 4. Note there is a wide variation in the complexity of 
the individual problems ranging from 0 iterations (no search of the decision tree) to about four hundred 
iterations (searching a small portion of the decision tree). The number of iterations required to find an 
optimal solution is therefore used as a measure of complexity for an individual problem. 
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Figure 7. Search Depth vs. Solution Complexity  

3 Statistical Characterization of NP-Complete Problems 

One of the primary goals of this investigation is to be able to view all NP-complete problems from a broad 
enough perspective to understand the nature of a solution algorithm that can work over the entire range of 
problem complexity.  This investigation attempts to characterize NP-complete problems in terms of a 
variety of system characteristics such as:  
 

• Constraint density  

• Number of optimal solutions 

• Ratio of zeros inside to outside block diagonal 

• Solution cardinality  

• Number of iterations (complexity) 

• Search depth  
 
The search depth is the number of variables that were combined to transform the A matrix into an A' 
matrix  that is in the solution space of the ineq algorithm. The solution complexity shown in Figure 5 was 
plotted against the corresponding search depth and the result is shown in Figure 7 above.  The greatest 
search depth (d) was d= 9 for a system that had a solution complexity of 200 iterations. The system with 
the highest complexity of just over 400 iterations required a search depth of d = 7. There appears to be a 
trend in Figure 7 that the most difficult systems all had relatively high search depths. Note that these 
results should be interpreted with some caution because a solution at a certain search depth does not 
necessarily mean that that was the minimum search depth required for that system. There could have been 
an optimal solution at a lower search depth that was not found by the algorithm. A worst case complexity 
of 400 attempts to a depth of 9 as seen in Figure 7 represents only a tiny fraction of the billions of possible 
paths through the first 9 levels of the decision tree.      



4 SUMMARY AND CONCLUSIONS 

An investigation was performed to develop insight into the continuum of difficulty that is observed in NP-
complete problems ranging from least difficult to most difficult. The result of the investigation showed 
that the complexity of NP-complete problems can be divided into two layers depending on whether or not 
a search of the first few branches of the decision tree is required. The solution algorithm involving the 
decision function f(A) = max(A2) was seen to separate the problem space into two subclasses: least 
difficult and more difficult. In addition, it was able to separate the more difficult problems into two 
separate subproblems: a least difficult subproblem and a more difficult search of the first few steps of the 
full decision tree. Complexity of an individual problem was then defined in terms of the number of 
iterations it took in the search of the first few steps of the decision tree to find an optimal solution. A 
relationship was observed between the constraint density of a problem and its difficulty. The most difficult 
problems appear to be somewhat underconstrained where a decision function can easily make an error.  
The variation in complexity seen in NP-complete problems was also seen to be correlated to the depth of 
search required to find an optimal solution. Systems of high complexity which require many iterations 
tend to require also a high search depth which is a measure of how close or how far away that system is to 
some other system that is solvable by the decision function f(A) = max(A2).      
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