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Abstract 

A method is described for solving np-complete problems by using a power-series expansion to represent a generalized 

decision function. The coefficients of the terms in the power-series are then used in a gradient search to find an optimal 

solution. Several factors are investigated including the effect of the number of terms used in the decision function, the 

initial region of space selected for the search and the overall amount of computation required.   
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1 Introduction 

The compatibility problem [1] is one of the best known and classic examples of np-complete problem. The problem can 

be represented as a nxn matrix A of ones and zeros with each row or column of the matrix representing one of the n 

variables (x1,x2,, …xn) each of which is either compatible or incompatible with each of the other variables. A solution 

can be represented as a vector s = (s1,s2,, …sn) where each si is an integer. This is known to be an np-complete and np-

hard problem [5] [6][7]. There are generally a large number of feasible solutions to this class of problem but a solution 

s* is called optimal only if the number of distinct elements (k) in the solution vector s is minimum over the set of all 

solutions {s}. Any single incompatibility can be represented by an inequation[8].  The general compatibility problem or 

“system of inequations” as it is referred to in [2] can be represented by a symmetric square matrix A of 1s and 0s with 1 

representing a constraint or incompatibility and a 0 representing a compatibility or lack of constraint. The matrix A is a 

representation of the system of inequations or the incompatibility between each of the n variables ji xx ≠ .  As 

described in [2], a system of inequations can also be represented by inequation (1): 

 

xAx ≠               (1) 

  

An algorithm for solving the general compatibility problem of equation (1) in exponential time is given in reference[9].  

Many algorithms for solving this problem in polynomial time have been studied (see[10] for a representative example). 

The typical non-exponential algorithm is relatively  fast but does not have a high success rate especially when the 

system dimension (n) increases. Recently a method has been introduced that is slower than these algorithms but 

increases the success rate close to 100% in polynomial time[2] even for rather large systems.  This current investigation 

is an extension of that work.  

 

Analogous to systems of equations, systems of inequations can be solved using substitution and elimination of 

variables[2]. A decision function is used to decide which pair of variables xi and xj  to combine or “associate” with one 

another. This process is repeated recursively until it is not possible to combine any more variables. It has been shown [2] 

that a number of decision functions can be intuitively derived from powers of the A matrix and its complement A . In 

this current investigation, a generalized decision function based on a power series expansion of the A matrix is derived.  

A grid search technique is then developed using the coefficients of the terms in the expansion and the performance of the 

technique is evaluated. The grid search is then used as a starting point for a gradient search technique. This leads to a 

method called the equivalence class subset gradient search method. The significance of this investigation is that the 

solution methods described can be performed in polynomial time and it is well known that a solution for one np-

complete problem can be used to solve any other np-complete problem[3][4][7].  
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2 Algorithm  

A solution algorithm for systems of inequations will first be stated[2]. Using a decision function f(A) an algorithm can 

be derived[2] for solving systems of inequations as shown in Figure 1.  The algorithm is recursive. It takes as input an 

nxn matrix A and reduces it to an (n-1)x(n-1) system, calling itself to solve the reduced system.  

 

ineq(A) 

ij� f(A) 

if {ij}={ } return s 

xi=xi|xj 

A=A-xj 

ineq(A) 

 

Figure 1.   Algorithm for solving systems of inequations  
 

The decision function f(A) identifies a single pair of variables ix  and jx  which are likely to be in the same equivalence 

class of an optimal solution. For example using f(A) = max(A
2
)

 
 could be used to identify a single pair of variables. 

These two variables are combined using the logical "OR" operator which represents the union of the constraints of ix  

and jx . The algorithm steps through a series of feasible solutions starting with the trivial solution s=(1,2,3…n). Each 

time the size of the matrix is reduced by one the number of equivalence classes in the solution vector s is reduced by 

one. The subtraction operator (-) is used to symbolically represent the elimination of the variable xj from the system 

(i.e., the removal of row j and column j from the matrix A). The algorithm terminates when the set {ij} is empty.  

 

The success rate of the algorithm depends on the decision function f(A) as shown in Table 1.  For example using f(A) = 

max(A
2
)

 
for a system of inequations of n=100 variables it is seen that the algorithm success rate is 90%. The success rate 

drops off rapidly at first for small n and then appears to level out. For decision function f(A)=min(A
2
) the success rate is 

much lower(40.8%). The decision function that chooses entirely at random f(A)=A has a success rate (55.7%) which is 

between f(A)=max(A
2
) and f(A)=min(A

2
). The decision function  f(A)=A is called random because aij=0 for all pairs of 

variables that can be combined. 

 

f(A)  n=10 20 30 50 100 200 300 500 
2A  max 99.5 98.6 96.8 93.2 90.0 87.6 86.1 87.4 

2A  min 49.5 44.3 41.4 40.6 40.8 41.7 43.3 41.5 

AA  
max 59.8 56.8 53.5 52.4 51.8 62.4 62.8 71.5 

AA  
min 99.9 98.4 96.5 91.3 89.2 88.8 88.3 87.7 

2

A  
max 90.4 80.9 73.7 66.1 63.4 60.2 58.5 62.0 

2

A  
min 64.8 63.0 66.6 67.6 69.1 75.3 74.7 81.5 

A  ---- 72.4 61.2 57.3 56.8 55.7 57.9 56.9 56.5 

 

Table 1  Success rate for decision functions f(A) (random A matrix sample size=5000) 

3 Powers of the A matrix 

The solution space of each of the individual decision functions in Table 1 largely overlap one another. However they do 

not completely overlap and use of more than one decision functions will generally yield a higher success rate than use of 

a single decision function. The difference is typically on the order of a few percent; using all the decision functions in 

Table 1 would for example increase the success rate for n=500 from 87.4% using  f(A)=max(A
2
) alone to about 90%[2].  

It is desirable to find a single decision function or set of decision functions that covers 100% of the system space {A}.  

A starting point for investigating this possibility is to consider the powers of the A matrix to see if any of them have 

resolving ability for solving systems of inequations (the resolving ability of a decision function can be defined as having 

a success rate better than random guessing, i.e.,  f(A)=A). Table 2 shows the result of this calculation.  



 

3 

 

f(A
p
)  n=10 20 30 50 100 200 300 500 

A
2
 max 99.5 98.6 96.8 93.2 90.0 87.6 86.1 87.4 

A
3
 max 71.4 74.6 77.3 77.5 79.8 75.8 79.9 80.2 

A
4
 max 99.8 97.4 94.3 90.2 87.9 85.4 87.5 84.5 

A
5
 max 78.6 82.3 81.5 80.3 81.8 81.3 83.3 86.9 

A
6
 max 99.8 97.2 94.1 89.4 85.6 84.2 84.0 83.1 

A ---- 72.4 61.2 57.3 56.8 55.7 57.9 56.9 56.5 

A
2
 min 49.5 44.3 41.4 40.6 40.8 41.7 43.3 41.5 

A
3
 min 85.3 68.7 60.0 50.2 48.7 49.7 48.0 46.0 

A
4
 min 54.5 45.6 41.6 41.6 42.0 40.8 39.9 42.3 

A
5
 min 80.1 59.8 52.4 50.4 45.8 46.8 47.8 46.4 

A
6
 min 54.1 46.3 44.4 43.6 44.9 40.6 43.9 42.6 

 

 

Table 2.  Success rate for decision functions f(A
p
) (random A matrix sample size=5000) 

 
Table 2 shows that the maximum of the even powers of the A matrix tend to have the highest success rate especially for 

systems less than dimension n=500. The success rate drops off from nearly 100% for small systems of dimension n=10 

to somewhat less than 90% for n=500, although the rate of decrease appears to start leveling off for n>=200. The 

minimum of the even powers perform worse than selecting pairs at random f(A)=A. The maximum of the odd powers do 

not perform as well as the even powers for small n but instead of decreasing trend slightly upwards in success rate as 

system dimension increases.  The difference in performance between odd and even powers of A may be related to 

dependencies between the variables known as cycles. A cycle is a dependency between a chain of variables starting at 

variable i and ending at the same variable i. The ij entry in the matrix A
p
 represents the number of cycles of length p that 

will be created if variables i and j are associated.  An even cycle can potentially be reduced to a chain of 2 variables 

while an odd cycle can only be reduced at best to a chain of 3 variables. This could be one reason why there is a 

difference between decision functions which maximize even cycles and decision functions which maximize odd cycles. 

It is not clear what is the asymptotic value of success rate as the dimension of the system increases but it is shown in [2] 

that f(A)=max(A
2
) can solve systems of inequations of arbitrary dimension n -> ∞ .   It is somewhat remarkable that a 

single decision function such as f(A)=max(A
2
) can be found that leads to an optimal solution in such a high percentage 

of cases.  For example to solve this problem with n=500 and k=3 a total of 500-3 = 497 consecutive correct decisions 

have to be made. 

4  Generalized Decision Function 

The results in Tables 1 and 2 point show that the powers of the A matrix can be used to solve systems of equations but 

the combined result of all the individual decision functions does not cover the entire system space {A}. Another 

possibility would be to use a linear combination of the powers of the A matrix as shown in equation (2). 

 

...)( 4

4

3

3

2

21 ++++= AcAcAcAcAf       (2) 

 

The first term of (2) can be dropped as it is always zero for all pairs of variables {ij} that can be combined. A grid or 

gradient search can be performed over the remaining ci values for a given A matrix to find a set of decision functions 

which yields an optimal solution. Another technique is to use simulation over a large number of random A matrices to 

see if there is any particular set of ci values that generally work better than others. This could provide a starting point for 

the grid or gradient search and reduce the amount of computation required on average. After a fair amount of trial and 

error, the result of applying a simulation technique showed a strong peak of success rate for coefficient values c1=0, 

c2=1, c3 = -1/n, c4 = 1/n
2
, c5 = -1 /n

3
, etc., where n is the dimension of the A matrix, as given in equation (3).  

 

...)( 645342312
++−+−=

−−−− AnAnAnAnAAf      (3) 

 

This expression for f(A) can also be represented in closed form as shown in equation (4).  The form in equation (3) can 

be obtained from (4) by multiplying by n
2
 and by dropping the I and A terms which are zero for any two pairs of 

variables that can be combined.   
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f(A) = (I + n
-1

A)
-1

  = ...4433221
−+−+−

−−−−

AnAnAnAnI
  

  (4) 

 

Another observation is that the matrix An
1−

 is very close to a markov matrix M where the transition probability to any 

state other than the state that the system is currently in is equiprobable. The An
1−

 matrix can be converted to a markov 

matrix M by adding to the main diagonal the number of zeros in each row (qi) divided by n as given in (5):   

M = n
-1

A + n
-1

Iq         (5) 

Where q is the vector of the number of zeros in each row. It is not clear why there might be any relationship between a 

markov chain and the decision function to an np-complete problem. Further investigation so far has not found any 

additional analytical or intuitive insight along this line of reasoning.  The result is a generalized decision function based 

on equation (3) but modified to include variable coefficients as shown in equation (6):   
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−−−−

AncAncAncAncAAf     (6) 

Equation (6) represents a generalized decision function for solving systems of inequations or any other np-complete 

problem since any np-complete problem can be converted into a system of inequations. Note the first term in the series 

is
2A  which is one of the basic decision functions as shown in Table 1. In practice only a finite number (m) of terms of 

f(A) are used so the generalized decision function can also be represented as in equation (7).   

2

1

2 )1()( +−

=

−+= ∑ iii
m

i

i AncAAf        (7) 

Preliminary investigation indicates there may be some relationship between the convergence or divergence of this series 

and the ability of the decision function to find an optimal solution. However further investigation is required before any 

conclusion can be drawn in this regard.  

5 Grid Search  

It is seen from Table 1 that the decision function f(A) = max(A
2
) can be used to find an optimal solution for 

approximately 90% of the entire system space {A} for dimension n=100 variables.  The amount of computational effort 

is seen from Figure 1 to involve O(n) calculations of the square of the A matrix (O(n
3
)) for a total computational effort 

of O(n)* O(n
3
) = O(n

4
).  

 

A grid search involves multiple solutions of the basic algorithm of Figure 1 plus additional calculations of higher powers 

of the A matrix. As a starting point a grid search was first carried out with the first 3 terms of equation (6) as shown in 

equation (8): 
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Note that this decision function will solve all the same systems that f(A)=max(A
2
) will solve if the coefficients (c1=c2=0) 

are included in the grid. The variables c1 and c2 were used in a grid search of the first quadrant and ci values were tried 

for integer values between 0 and 10: 0<=c1<=10 and 0<=c2<=10. Figure 2 shows a typical result for a system of 

dimension n=100 variables and optimal solution cardinality k=20. The decision function f(A)= max(A
2
) was unable to 

solve this particular problem as seen by the lower left hand corner of the diagram (c1=c2=0).  Similarly coefficient values 

c1=c2=1 did not yield an optimal solution. However as seen in the white area of the figure that the grid search did find a 

set of optimal solutions as there were a number of (c1,c2) combinations that did solve the problem (such as (c1=0, c2=2) 

and (c1=3,c2=3)).  It is typical to find more than one decision function which leads to an optimal solution for a given 

system of inequations (A).  For example there are many non-integer sets of coefficients that lead to an optimal solution 

for solve this system as indicated by the region of white space in Figure  2. 
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Figure 2. Grid search for matrix A of dimension n=100 and k=20 in first quadrant 
 

A simulation of 1000 random A matrices of dimension n=100 and known solution cardinality k randomly distributed 

between 2 and 100 and ones density uniformly distributed between 0 and 1 for a search on the first quadrant had a 

solution rate of about 94.5% as compared to 90% for f(A)=max(A
2
). Since the method of Figure 1 is about O(n

4
) and the 

first quadrant search required 11*11=121 calculations of the basic algorithm the computational effort for this improved 

success rate was approximately O(n)*O(n
4
) = O(n

5
). 

 

The next idea investigated was the extending of the grid search to all four quadrants of the (c1,c2) space.  Figure 3 shows 

a typical result for a matrix A of dimension n=100 and optimal solution cardinality k=13. In this case a region of optimal 

solution was found in the first, second and third quadrants but not the fourth. This region of optimal solution includes the 

case of c1=c2=1 as well as many (perhaps an infinite number) of non-integer (c1,c2) values. Extending the search to all 

four quadrants quadrupled the amount of effort required to 441 calculations of the basic algorithm as compared to 121 

calculations for only the first quadrant, but this can still be considered O(n
5
) complexity.  A simulation using 1000 

random A matrices with known solution cardinality k (2<=k<=100) resulted in a success rate for n=100 of about 96.3%. 

This is an improvement of two percentage points for a four-fold increase in computational effort.    

 

Based on the results obtained thus far it us seen that a simple grid search on integers can yield a success rate for about 

96% of systems of dimension n=100. There is no doubt that success rate could be further increased by using a finer grid 

spacing or extending the grid beyond (|c1|,|c2|)=(10,10). How much further the success rate can be increased using this 

approach is not known. However a grid search approach can become very inefficient if extended to large regions of 

space with increasingly fine grid spacing and at some point it becomes more efficient to use a gradient search.  In the 

next section, two types of gradient search are investigated. One uses the solution cardinality k which is the same as in 

the grid search. The other uses a new parameter z which is the total number of pair associations {ij} in a feasible 

solution s. 
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Figure 3. Grid search for matrix A of dimension n=100 k=13 over four quadrants 

 

6 Gradient Search  

The grid search can be used as a starting point of a technique known as a gradient search. Looking back on Figures 2 and 

3 it is seen that a significant subregion of the total area covered by the grid resulted in a decision function that lead to 

optimal solutions. In general it will be found that  some systems have relatively small regions where the decision 

function result in optimal solution while others have relatively large regions. This is an indication that the difficulty of a 

particular  problem may be related to how few or how many decision functions lead to an optimal solution. To find an 

optimal solution for systems with  small regions of optimal decision functions the gradient search can be more efficient 

than the grid search. The idea of the gradient search is analogous to the standard technique used with multivariable 

continuous functions. For example, Figure 3 shows that regions of optimal solution k*=13 are surrounded by regions of 

suboptimal solution k=14 which is surrounded by a suboptimal region of k=15. This gives an expectation that at least in 

some cases that were not solved using a grid search might have been solved by placing a finer grid in those areas which 

had the lowest solution cardinality. This is done to save computational effort since it is more efficient than putting a 

finer grid over the (c1,c2) coefficient space.  

 

To use a gradient search some technique such as using a convex hull could be used to define the subregion of lowest 

solution cardinality and then a finely spaced grid of points could be selected. Another approach would be to use the 

points themselves to define the space instead of first finding the boundary region of that space. One way to do this would 

be to choose pairs of points at random within the desired subregion and choose a random point on the line between them. 

This defines a new subregion on which to perform a new grid search and the process can be repeated as many times as 

desired. The gradient search technique was tested using the decision function in equation (9) which extends out to the 

sixth power of the A matrix and involves a gradient search on four variables c1,c2,c3,c4. 
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+−+−=     (9) 

 

It was decided to use only the first quadrant for test purposes and to speed up the computation since it was observed that 

most of the systems studied had solutions in the first quadrant even if they had solutions in other quadrants. To keep the 

computation reasonable each of the ci coefficients was allowed to have 6 values: 0,2,4,6,8, and 10.  This leads to 6
4  

= 

1296  calculations of the basic algorithm of Figure 1. From this grid calculation a subregion of the 4-dimensional space 

was formed to further refine the search. Next 400 pairs of points in this 4-dimensional space were chosen by  randomly 

choosing a point on the line connecting the random pairs of points. Then another subregion was defined by using the 

best solutions from these points and these were used to generate another 400 point subregion to further refine the search.  

 

The performance of this gradient search algorithm was evaluated by simulation using 1000 random A matrices and the 

result was that an optimal solution was found in 98.1% of the cases. This was at a computational cost of  1296+400+400 

= 2096 solutions of the basic algorithm. Compared to the previous two calculations it was even more computationally 

intensive because each decision function required raising the A matrix to the fifth and sixth powers. Considering all of 

these factors the gradient search had a computational complexity somewhere between O(n
5
) and O(n

6
).  As might have 

been anticipated the computational appears to increase significantly as the solution rate approaches 100%. 

 

7 Equivalence Class Subset Algorithm  

 

The solution techniques discussed so far have been based on minimizing the solution cardinality k using either a grid or 

gradient search. There is however another form of gradient search which is based on a related parameter z which is the 

total number of pair associations {ij} in the solution s. A pair association {ij} occurs when a pair of variables xi and xj 

are combined into the same equivalence class.  If an optimal solution vector s* is permuted such that all equivalence 

classes are grouped together and the corresponding A matrix is permuted accordingly, it is seen that the A matrix takes 

on a block diagonal form[2]. Generally speaking the lower the solution cardinality (k) the greater the total number of 

zeros in all of the blocks of the block diagonal form.  

 

To illustrate the idea of the total number of pair associations refer to Figure 4 which represents the result of a grid search 

on a system of n=100 variables. However, instead of showing the solution cardinality (k) as in Figures 2 and 3, the 

number of pair associations (z) is shown. This gives a very similar result as compared to Figures 2 and 3 since optimal 

solutions will generally have the highest number of pair associations as  represented by the white areas of Figure 4 (note 

that to make Figure 4 easier to compare with Figures 2 and 3 it actually shows (max(z)-z) instead of z since when 

z=max(z), max(z) – z = 0).   

 

The white areas of Figure 4 also correspond to optimal solutions k* as do some of the light gray areas. As with the 

solution cardinality k, the total number of pair associations z follows a contour pattern with contiguous areas of optimal 

solution surrounded by contiguous areas of suboptimal (but close to optimal) solutions. This gives rise to another form 

of gradient search based on the total number of pair associations z which is equivalent to total number of zeros in the 

diagonal blocks of A as shown in equation (10).  

 ∑
=

=

k

i

ikz
1

2
          (10) 

 

where ki is the number of variables in each of the k equivalence classes. For example a solution vector s = (1,2,1,1,2,2) 

would correspond to an A matrix having two 3x3 diagonal blocks when the rows and columns are permuted so that all 

variables in the same equivalence class are grouped together for example in monotonically increasing order 

(s=(1,1,1,2,2,2)). In this case the parameter z =18 since k1=k2=3. Every solution in the set of feasible solutions {s} 

corresponds to its own z value and the highest values of z almost always corresponds to the lowest values of solution 

cardinality k (as illustrated in Figure 4).  
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 Figure 4.  Total number of pair associations z for a typical A matrix (max(z)-z)   
 

 

Generally speaking the optimal solutions of a particular A matrix corresponding to a system of inequations will contain 

more zeros in the block diagonals as compared to the suboptimal solutions. To estimate which pair associations {ij}are 

most likely to lead to an optimal solution an nxn pair association matrix Z can be defined as shown in equation (11).  
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Z         (11) 

 

 

The element zij of the matrix Z represents an estimate of the average number of total pair associations found when the 

pairs i and j are in the same equivalence class. In general, the more pair associations in a solution s means the less 

number of equivalence classes required. During a grid or gradient search, many feasible solutions are found. Every time 

any solution s is calculated,  the total number of pair associations z corresponding to s is calculated and used to update 

the matrix Z for the set of pair associations in s. On average pair associations with the largest values in the Z matrix are 

more likely to lead to optimal solutions.  

 

The resulting algorithm involves using the Z matrix to choose a maximum likelihood subset {ij} of the pair associations 

represented by a solution vector s to maximize the probability of finding an optimal solution. The method is called the 

equivalence class subset algorithm which is given in Figure 5.   
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while(condition){ 

A’ = A({ij}) 

s = ineq(A’) 

k = max(s) 

z = z(s) 

if(k==k* && z>z*) s*=s, z*=z 

if(k<k*) s*=s, k*=k, z*=z} 

  

Figure 5.   Equivalence class subset algorithm   
 

The first step in the equivalence class subset algorithm (not shown for clarity) is to initialize s*=(1,2,…n), k*=n, and 

z*=n where s*, k*, and z* represent the current best solution and n is the dimension of the system. This corresponds to 

the trivial solution that solves any system of inequations and also the optimal solution for k=n. The while(condition) 

provides a stopping criterion. For example limiting the number of iterations to some value such as n creates an O(n
5
) 

algorithm while limiting the number of iterations to n
2
 creates an O(n

6
) algorithm (assuming ineq(A) is O(n

4
)).  The first 

step of the algorithm is to take the system A matrix and create a new A’ matrix by combining some subset of variables 

{ij} based on the matrix Z and the current best solution s*. The first time through the algorithm all values of zij in Z=0 

and s*=(1,2,3…n) which means that {ij}={} so that A’=A.  The solution vector s corresponding  to A’ is then calculated 

using the ineq(A) algorithm in Figure 1 and this solution is used to calculate the solution cardinality k=max(s). The total 

number of pair associations z=z(s) is then calculated according to equation (10).  There are three possible outcomes: 

k=k*,  k<k*, or k>k*.  If the solution cardinality has not improved (k*=k) but the number of pair associations z has 

improved (z>z*) then the solution s is taken as the new best solution s*. If the solution cardinality has improved (k<k*) 

then the solution s is taken to be the new best solution s*.  If the solution cardinality of s is greater than s* (k>k*) or if  

k=k* and z<z* then the solution s* is not updated.  Before starting the next iteration the pair association matrix Z is 

updated by calculating the new averages for each pair association as represented by equation (11). 

 

The idea behind the equivalence class subset algorithm is that in the majority of cases most of the decisions made by an 

f(A) decision function are correct.  If most of the decisions are correct then choosing a subset of pair associations from 

even a suboptimal solution s will in many cases only contain pair associations which lead toward an optimal solution.  

When the subset of pair associations {ij} are associated by combining the indicated variables the matrix A is modified to 

form a new matrix A’.  If no incorrect decisions were included in {ij} then the A’ matrix will have the same optimal 

solution cardinality as the matrix A.  If in addition the matrix A’ falls into the region of convergence of one of the 

decision functions of the grid or gradient search then an optimal solution will be found.  The larger the size of the subset, 

the higher the probability it is to contain an incorrect decision. The smaller the size of the subset, the less likely it is to 

contain an incorrect decision.  The result of solving thousands of systems indicates that the subset size that leads to the 

optimal solution is usually less than 30% of the total number of pair associations in a solution vector s. The subset size 

can be chosen at random for each iteration. However, once the size of the subset is determined the method of choosing 

the subset needs to be decided. One simple way is to use the maximum likelihood method which is to simply rank order 

the elements of the matrix Z and choose the desired subset using the largest values in Z.  The effect of the equivalence 

class subset algorithm is to simultaneously minimizing k while maximizing the parameter z.  The z parameter 

maximization provides a way to differentiate between the large number of solutions of cardinality k>k*.     

 

The result of a simulation using 1000 random A matrices shows that the equivalence class subset search for system of 

dimension n=100 having a success rate of about 99.8% for a computational complexity O(n
6
).  Figure 5 shows a typical 

trajectory of the equivalence class subset algorithm for a system of n=100 variables and optimal solution cardinality 

k*=13.  The lower line represents the sequence of k values starting at k=15 and ending an optimal solution k*=13. The 

dashed line represents the total number of pair associations z which it is desired to maximize (for simplicity the actual 

numbers are not shown for the pair associations).  The method required choosing about 40 subsets from the suboptimal 

solution vector s(k=15) to find a better solution s(k=14) while improving the solution vector s continuously along the z 

gradient.  After choosing 60 more subsets from s(k=14) and improving steadily along the z gradient the method found an 

optimal s*(k*=13) solution.       
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Figure 5. Typical trajectory of equivalence class subset algorithm for system with k*=13 

 

8 Summary and Conclusions 

A method is described for solving the compatibility problem[1][2] using a power-series expansion to represent a 

generalized decision function.  The method is very general in that it can be applied to any system of any dimension n 

and solution cardinality k. The basic technique uses the coefficients of the terms in the power-series in a grid or gradient 

search. A two-dimensional grid search of the first quadrant was able to solve 94% of the systems of dimension n=100 

for O(n
5
) complexity. When extended to all four quadrants the success rate was increased to 96% for a four-fold increase 

in complexity.  A four dimensional gradient search increased the success rate to 98% at complexity somewhere between  

O(n
5
) and O(n

6
).  Next the equivalence class subset method was tested and found to have a 99.8% success rate for O(n

6
) 

complexity.  The random A matrices used to obtain the success rate estimates were chosen to be uniformly distributed 

across the system space S={A} (the set of all possible systems of inequations) so that the result would be a reliable and 

reproducible indicator of algorithm performance that could be used to compare against other algorithms. The uniform 

distribution was applied across both the constraint density and the solution cardinality k to ensure that the sample 

included a true cross-section of the entire spectrum of problem difficulty. The results were validated by generating the 

results for other random samples of size 1000 and observing that there were no significant deviation of the results.  The 

high success rate of the generalized decision function leads to the question of whether there is for every A matrix (or 

system of inequations) at least one decision function that leads to an optimal solution. It is possible to keep adding terms 

to the power series expansion and to increase the breadth and depth of search in an attempt to continue increasing the 

success rate.  These results appear to imply that there may exist some algorithm for solving np-complete problems with a 

success rate asymptotically approaching 100% in polynomial time.  The reason for this kind of asymptotic behaviour 

appears to be that the problem difficulty falls into a type of continuum ranging from systems that can be solved by any 

decision function to others that appear to be solved by only a small number of decision functions. It was observed that 

there is a pattern to the location of the optimal solutions within the vast sea of suboptimal solutions. The optimal 

solutions tend to fall in semi-contiguous regions of space and are surrounded by regions of suboptimal solutions which 

are in some sense close to optimal. This makes it possible to construct algorithms such as the equivalence class subset 

method which can find an optimal solution with high success rate without searching all of the possibilities.    
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