mutinformation {infotheo} | R Documentation |
mutinformation
takes two random variables as input and computes the
mutual information in nats according to the entropy estimator method
.
If Y is not supplied and X is a matrix-like argument, the function returns a matrix of mutual
information between all pairs of variables in the dataset X.
mutinformation(X, Y, method="emp")
X |
vector/factor denoting a random variable or a data.frame denoting a random vector where columns contain variables/features and rows contain outcomes/samples. |
Y |
another random variable or random vector (vector/factor or data.frame). |
method |
The name of the entropy estimator. The package implements four estimators :
"emp", "mm", "shrink", "sg" (default:"emp") - see details.
These estimators require discrete data values - see discretize . |
mutinformation
returns the mutual information I(X;Y) in nats.
Patrick E. Meyer
Meyer, P. E. (2008). Information-Theoretic Variable Selection and Network Inference from Microarray Data. PhD thesis of the Universite Libre de Bruxelles.
Cover, T. M. and Thomas, J. A. (1990). Elements of Information Theory. John Wiley, New York.
condinformation
, multiinformation
, interinformation
, natstobits
data(USArrests) dat<-discretize(USArrests) #computes the MIM (mutual information matrix) I <- mutinformation(dat,method= "emp") I2<- mutinformation(dat[,1],dat[,2])