
The pgfSweave Package
Cameron Bracken and Charlie Sharpsteen

December 26, 2009

The pgfSweave package is about speed and style. For speed, the package provides capabilities for
“caching” graphics generated with Sweave on top of the caching funcitonality of cacheSweave1. For
style the pgfSweave package facilitates the integration of R graphics with LATEX reports through the
tikzDevice2 package and eps2pgf3 utility. With these tools, figure labels are converted to LATEX
strings so they match the style of the document and the full range of LATEX math symbols/equations are
available.

The backbone of pgfSweave is a a new driver for Sweave (pgfSweaveDriver). The driver provides
new chunk options tikz, pgf and external on top of the cache option provided by cacheSweave.
This package started as a fork of cacheSweave. This document highlights the features and usage of
pgfSweave. This document assumes familiarity with Sweave.

1 Motivation and Background

Sweave is a tool for generating “reproducible research” documents by embedding R or S “code chunks”
directly into a LATEX document. For small projects, this approach works well. For large papers or projects,
heavy data analysis or computation can cause document compilation times that are unacceptable. The
problem of performing lengthy computations in Sweave documents is not a new one. Previous attempts
to tackle this problem include the cacheSweave and weaver4 packages. These packages address the
problem that code chunks with lengthy computations are executed every time a document is compiled.
Both packages provide a cache option which saves R objects for quick access during successive compi-
lations. The cacheSweave package stores results in a filehash5 databases while the weaver package
stores RData files. The benefit of the cacheSweave method is lazy loading of objects. Both methods
provide significant speedup for most Sweave documents, namely those which create objects in the global
environment.

The existing methods have some drawbacks:

1. Plots are not cached (since plots do not generally create objects in the global environment). If
a plot takes a long time to generate, the same problem exists as when lengthy computations are
present. Ideally we would like to reuse a plot if the code that generated it has not changed.

2. Consistency in style (font, point size) in automatically generated graphics is difficult to achieve.
The default font and point size in R does not match LATEX very well and getting this to match
precisely is tricky business. The previously mentioned tools, tikzDevice and eps2pgf, counter
this but using them with Sweave manually can be cumbersome.

The pgfSweave package addresses these drawbacks. The so called “caching” of plots is achieved with
the help of three tools: the TEX package PGF6 and either the command line utility eps2pgf or the
R package tikzDevice. When we refer to the “caching” of a graphic we mean that if the code chunk
which generated the graphic is unchanged, an image included from a file rather than regenerated from the
code. The TEX package pgf provides the ability to “externalize graphics.” The effect of externalization

1http://cran.r-project.org/web/packages/cacheSweave/index.html
2http://cran.r-project.org/web/packages/tikzDevice/index.html
3http://sourceforge.net/projects/eps2pgf/
4http://www.bioconductor.org/packages/2.3/bioc/html/weaver.html
5http://cran.r-project.org/package=filehash
6http://sourceforge.net/projects/pgf/

1

http://cran.r-project.org/web/packages/cacheSweave/index.html
http://cran.r-project.org/web/packages/tikzDevice/index.html
http://sourceforge.net/projects/eps2pgf/
http://www.bioconductor.org/packages/2.3/bioc/html/weaver.html
http://cran.r-project.org/package=filehash
http://sourceforge.net/projects/pgf/

is that graphics get extracted and compiled separately, saving time on subsequent compilations. The
externalization chapter in the PGF/TikZ manual is extremely well written, and we refer the interested
user there for more information. Externalization plus some clever checking on the part of pgfSweave
makes up the caching mechanism.

The plot style consistency drawback is addressed by the handy options tikz and pgf which allow for
graphics to be output in these formats. Again, it is possible to do this manually but the chunk options
make things easier.

2 System Requirements

In general pgfSweave depends on:

1. A working TEX distribution (such as TeXLive for linux and mac and MiKTex for Windows)

2. The java command line interpreter (i.e. the java command). This is standard on most systems
and is free to download otherwise.

3. At least version 2.00 of the PGF/TikZ package for LATEX.

That should be it for any *nix or Mac OS X system.

2.1 Windows specific requirements

The pgfSweave package can work on Windows with some special care. First of all it is strongly recom-
mended that R be installed in a location that does not have spaces in its path name such as C:\R. This
will save much grief when using Sweave. In addition, do the following in the order listed.

1. Install Java.

2. Install MiKTEX.

3. Upgrade to or install PGF 2.0 if not already done.

4. Install Rtools7. Make sure to allow the Rtools installer to modify your PATH.

If everything is set up correctly, the commands java and pdflatex or latex should be available at the
command prompt.

3 Usage

We assume a familiarity with the usage of Sweave, for more information see the Sweave manual.8

This section will explain the usage of the tikz, pgf and external options and then provide a complete
example.

3.1 The tikz option

The first new code chunk option, tikz, acts the same as the pdf or eps options but instead of result-
ing in an \includegraphics{} statement the esult is an \input{} statement. Consider the following
code:

7http://www.murdoch-sutherland.com/Rtools/
8http://www.stat.uni-muenchen.de/~leisch/Sweave/Sweave-manual.pdf

2

http://www.murdoch-sutherland.com/Rtools/
http://www.stat.uni-muenchen.de/~leisch/Sweave/Sweave-manual.pdf

Input:
\begin{figure}[ht]
<<tikz-option,fig=T,tikz=T,echo=F>>=

x <- rnorm(100)
plot(x)

@
\caption{caption}
\label{fig:tikz-option}
\end{figure}

Output:
\begin{figure}[ht]
\input{tikz-option.tikz}
\caption{caption}
\label{fig:tikz-option}
\end{figure}

The .tikz file is generated with the tikzDevice package. This is the default graphics output for
pgfSweave, the tikz option is set to TRUE by default.

3.2 The pgf option

The second new code chunk option pgf, acts the same as the tikz option in that the result is an \input{}
statement. Consider the following code:

Input:
\begin{figure}[ht]
<<pgf-option,fig=T,pgf=T,tikz=F,echo=F>>=

x <- rnorm(100)
plot(x)

@
\caption{caption}
\label{fig:pgf-option}
\end{figure}

Output:
\begin{figure}[ht]
\input{pgf-option.pgf}
\caption{caption}
\label{fig:pgf-option}
\end{figure}

The .pgf file is generated with the eps2pgf utility. The postscript graphics device is used first to
generate a .eps file. Then the command

$ java -jar /path/to/eps2pgf.jar -m directcopy graphic.eps

is run on every code chunk that has fig=TRUE and pgf=TRUE. We do not recommend using this option
in favor of the tikz option. Using the pgf option involves two creation steps instead of one and it strips
the R text styles (such as boldface).

3.3 The external option

The external option is the interface to the graphics caching mechanism in pgfSweave. This option will
wrap your graphics output in \beginpgfgraphicnamed and \endpgfgraphicnamed.

Input:
\begin{figure}[ht]
<<external,fig=T,tikz=T,external=T,echo=F>>=

x <- rnorm(100)
plot(x)

@
\caption{caption}
\label{fig:external-option}
\end{figure}

Output:
\begin{figure}[ht]
\beginpgfgraphicnamed{external}
\input{external.tikz}
\endpgfgraphicnamed
\caption{caption}
\label{fig:external}
\end{figure}

3

When a graphic is newly created or when it has changed, pgfSweave will generate a command for
externalizing that graphic in the shell script <filename>.sh. This follows the process outlined in the
externalization section of the pgf manual. After the Sweave process is done the externalization commands
are run. This will create separate image files for each graphic. On later compilations this image file
will simply be included instead of being regenerated. NOTE: \pgfrealjobname{<basefilename>} in
the header of your document otherwise externalization will not work! For example if you document is
main.Rnw then your header should contain the line \pgfrealjobname{main}. Did we mention you should
read the pgf manual?

3.3.1 The Externalization Driver

The option tex.driver not very well publicized, but it controls which engine (LATEX,PDFLATEX, XeLATEX)
is used. This way, the externalization feature can be used to generate eps and pdf external files.

3.3.2 Compilation Time

The combination of cacheSweave code caching and pgfSweave figure caching can provide drastic
decrease in compilation time. The time speedup is highly dependednt on what code you are executing
but using pgfSweave effectivly reduces the compilation time of Sweave to the time it takes to compile
the LATEX document.

3.4 A Complete Example

At this point we will provide a complete example. The example from the Sweave manual is used to
highlight the differences. The two frame below show the input Sweave file pgfSweave-example-Rnw.in
and the resulting tex file pgfSweave-example-tex.in.

pgfSweave-example-Rnw.in
\documentclass{article}

\usepackage{tikz}
\usepackage[margin=1in]{geometry}
\pgfrealjobname{pgfSweave-example}
\title{Minimal pgfSweave Example}
\author{Cameron Bracken}

\begin{document}

<<setup,echo=F>>=
setCacheDir("cache")
@
\maketitle
This example is identical to that in the Sweave manual and is intended to
introduce pgfSweave and highlight the basic differences. Please refer to
the pgfSweave vignette for more usage instructions.

We embed parts of the examples from the \texttt{kruskal.test} help page
into a \LaTeX{} document:

<<data,cache=T>>=
data(airquality)

4

kruskal.test(Ozone ~ Month, data = airquality)
@
which shows that the location parameter of the Ozone distribution varies
significantly from month to month. Finally we include a boxplot of the data:

\setkeys{Gin}{width=4in}
\begin{figure}[!ht]
\centering
%notice the new options
<<boxplot,echo=F,fig=T,tikz=T,external=T,width=4,height=4>>=

boxplot(Ozone ~ Month, data = airquality,main='Ozone distribution',
xlab='Month',ylab='Concentration')

@
\caption{This is from pgfSweave. Text is typset by \LaTeX\ and so matches the
font of the document.}
\end{figure}

\end{document}

pgfSweave-example-Rnw.in

On the input file run:

R> library(pgfSweave)
R> pgfSweave('example.Rnw',pdf=T)

or

$ R CMD pgfsweave example.Rnw

And we get:
pgfSweave-example-tex.in

\documentclass{article}

\usepackage{tikz}
\usepackage[margin=1in]{geometry}
\pgfrealjobname{pgfSweave-example}
\title{Minimal pgfSweave Example}
\author{Cameron Bracken}

\usepackage{/Library/Frameworks/R.framework/Resources/share/texmf/Sweave}
\begin{document}

\maketitle
This example is identical to that in the Sweave manual and is intended to
introduce pgfSweave and highlight the basic differences. Please refer to
the pgfSweave vignette for more usage instructions.

We embed parts of the examples from the \texttt{kruskal.test} help page
into a \LaTeX{} document:

\begin{Schunk}

5

\begin{Sinput}
> data(airquality)
> kruskal.test(Ozone ~ Month, data = airquality)
\end{Sinput}
\end{Schunk}
which shows that the location parameter of the Ozone distribution varies
significantly from month to month. Finally we include a boxplot of the data:

\setkeys{Gin}{width=4in}
\begin{figure}[!ht]
\centering
%notice the new options
\beginpgfgraphicnamed{pgfSweave-example-boxplot}
\input{pgfSweave-example-boxplot.tikz}
\endpgfgraphicnamed
\caption{This is from pgfSweave. Text is typset by \LaTeX\ and so matches the
font of the document.}
\end{figure}

\end{document}

pgfSweave-example-tex.in

6

Minimal pgfSweave Example

Cameron Bracken

December 25, 2009

This example is identical to that in the Sweave manual and is intended to introduce pgfSweave and
highlight the basic differences. Please refer to the pgfSweave vignette for more usage instructions.

We embed parts of the examples from the kruskal.test help page into a LATEX document:

> data(airquality)

> kruskal.test(Ozone ~ Month, data = airquality)

which shows that the location parameter of the Ozone distribution varies significantly from month to month.
Finally we include a boxplot of the data:

5 6 7 8 9

0
50

10
0

15
0

Ozone distribution

Month

C
on

ce
nt

ra
ti
on

Figure 1: This is from pgfSweave. Text is typset by LATEX and so matches the font of the document.

1

7

4 The Process

The process that pgfSweave uses when caching and externalization are turned on is outlined in the flow
chart below:

Examine code chunk

Has the
code chunk

changed
from a

previous
run?

Run the chunk
and cache the

results

Lazyload the
results

Did the
chunk
do any

plotting?

Move on to
next chunk

Is the
graphic

non-
existant
or has

the chunk
changed?

Generate the
graphic and the

extenaliztion
commands

Out of
chunks?

End (Still need to run externalization commands)

yes

no

yes

no

yes
yes

no

no

Figure 1: Flow chart of modeling procedure.

8

5 Consistency in style between graphics and text

In Figure 2, notice the inconsistency in font and size between the default R output and the default LATEX
output. Fonts and font sizes can be changed from R but it is hard to be precise. What if you decide to
change the font and and point size of your entire document? In Figure 3 and 4the text is consistent with
the rest of the document.

Histogram of rnorm(10000)

rnorm(10000)

F
re

qu
en

cy

−4 −2 0 2 4

0
10

00
20

00

Figure 2: This is normal Sweave.

Histogram of rnorm(10000)

rnorm(10000)

Fr
eq

ue
nc

y

-4 -2 0 2 4
0

10
00

Figure 3: This is from pgfSweave with the pgf
option.

Histogram of rnorm(10000)

rnorm(10000)

Fr
eq

ue
nc

y

-4 -2 0 2 4

0
50

0
15

00

Figure 4: This is from pgfSweave with the tikz option.

9

6 Sweave graphic width defaults

The default in Sweave.sty is to fix the width of every image to 80% of the text width by using
\setkeys{Gin}{width=.8\textwidth}. Say you have a 7 in text width and code chunk where you
set width=4. The original 4 inch wide graphic will have text size matching your document but when it is
included in your document it will be scaled up to 7 inched wide and the text will get bigger! This default is
quite contrary to the philosophy of pgfSweave. There are two ways around this before each code chunk
you can set \setkeys{Gin}{width=<graphic width>}. Alternatively (and the recommended way) you
can turn off this feature globally by using \usepackage[nogin]{Sweave}, that way the width and height
of the figure are controlled by the arguments to the code chunk.

7 Command line interface

In recent versions, pgfSweave got an R CMD command line interface. On Unix alikes (including Mac OS
X) a symbolic link $R HOME/bin/pgfsweave to $R HOME/library/pgfSweave/exec/pgfsweave-script.R.
On Windows a copy of the script is made instead. This script is only installed if pgfSweave is installed
from source.

Here is a listing from R CMD pgfsweave --help:

Usage: R CMD pgfsweave [options] file

A simple front-end for pgfSweave()

The options below reference the following steps
(1) Run Sweave using pgfSweaveDriver
(2) Run the pgf externalization commands
(3) Compile the resulting tex file using texi2dvi()

Default behavior (no options) is to do (1), (2) then (3) in that order.

Options:
-h, --help print short help message and exit
-v, --version print version info and exit
-d, --dvi dont use texi2dvi() option pdf=T i.e. call plain

latex (defalt is pdflatex)
-n, --graphics-only dont do (3), do (1) then (2); ignored if

--pgfsweave-only is used
-s, --pgfsweave-only dont do (2) or (3), only do (1)

Package repositories:
http://github.com/cameronbracken/pgfSweave (cutting edge development)
http://r-forge.r-project.org/projects/pgfsweave/ (for precompiled packages)

10

8 Frequently Asked Questions

Can pgfSweave be run from the command line?

Yes! See section 7.

$ R CMD pgfsweave <yourfile>.Rnw

The changes to my code chunk are not being recognized.

Occasionally pgfSweave suffers from overzealous caching. In these cases it may be necessary to manually
delete the cache or the figure files. This is something we need to improve but this is better than compiling
too often which is what used to happen.

How do I set subdirectories for figures and caches?

This is straight out of the Sweave and cacheSweave manuals (nothing new here). For a figures subdi-
rectory 9 use the prefix.string option:

\SweaveOpts{prefix.string=figs/fig}

For a caching subdirectory use a code chunk at the beginning or your document like:

<<setup,echo=F>>=
setCacheDir("cache")
@

Why are the width and height options being ignored?

This is another one from Sweave. You must use the nogin option in Sweave.sty for the width and
height parameters to actually affect the size of the image in the document:

\usepackage[nogin]{Sweave}

LATEX/PDFLATEX is not found in R.app (Mac OS X) and [Possibly] R.exe
(Windows)

Your latex program is not in the default search path. Put a line such as:

Sys.setenv("PATH" = paste(Sys.getenv("PATH"),"/usr/texbin",sep=":"))

in your .Rprofile file.

I get a bunch of “Incompatible list can’t be unboxed” errors when compil-
ing.

This is a problem with the CVS version of PGF. The workaround is to load the atbegshi package before
PGF or TikZ:

9make sure to create the directory first!

11

\usepackage{atbegshi}
\usepackage{pgf}

or

\usepackage{atbegshi}
\usepackage{tikz}

The vignette in /inst/doc/ does not contain any code chunks!

That is because the vignette in /inst/doc/ is a “fake” vignette generated from the “real” vignette in
/inst/misc/vignette-src/. The reason for this extra step is that package vignettes must be able to be
compiled with R CMD Sweave, which is precisely what we don’t want to use!

To compile the vignette yourself, download the package source, unpack it and then do the following:

git clone git://github.com/cameronbracken/pgfSweave.git
R CMD INSTALL pgfSweave
cd pgfSweave/inst/misc/vignette-src/
make

Which will create pgfSweave-vignette-source.pdf

12

	Motivation and Background
	System Requirements
	Windows specific requirements

	Usage
	The tikz option
	The pgf option
	The external option
	The Externalization Driver
	Compilation Time

	A Complete Example

	The Process
	Consistency in style between graphics and text
	Sweave graphic width defaults
	Command line interface
	Frequently Asked Questions

