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1 Introduction

While working on a series of program evaluations for which only observational data were available,
we developed methods (written up in McCaffrey et al., 2004) and several R scripts and functions
that we believe will be of general interest to analysts developing propensity score models, models
of attrition or nonresponse, and some other applications. Because we now regularly use these
functions, and many of our colleagues at RAND have found them useful, we have collected them
as the Toolkit for Weighting and Analysis of Nonequivalent Groups, or the twang package in R.

The propensity score is the probability that a particular case would be assigned or exposed
to a treatment condition. Rosenbaum & Rubin (1983) showed that knowing the propensity score
is sufficient to separate the effect of a treatment on an outcome from confounding factors that
influence both treatment assignment and outcomes, provide the necessary conditions hold. The
propensity score has the balancing property that given the propensity score the distribution of
features for the treatment cases is the same as that for the control cases. While the treatment
selection probabilities are generally not known, good estimates of them can be effective at dimin-
ishing or eliminating confounds between pretreatment group differences and treatment outcomes
in the estimation of treatment effects..

There are now numerous propensity scoring methods in the literature. They differ in how
they estimate the propensity score (e.g. logistic regression, CART), the target estimand (e.g.
treatment effect on the treated, population treatment effect), and how they utilize the resulting
estimated propensity scores (e.g. stratification, matching, weighting, doubly robust estimators).
We originally developed the twang package with a particular process in mind, generalized boosted
regression to estimate the propensity scores and weighting of the comparison cases to estimate
a treatment effect on the treated. The main workhorse of twang is the ps() function that
implements this process. However, the framework of the package is flexible enough to allow the
user to use propensity score estimates from other methods and implement new stop.method
objects to assess the usefulness of those estimates for ensuring equivalence (or “balance”) in the
pretreatment covariate distributions of treatment and control groups. The same set of functions
are also useful for other tasks such as non-response weighting, discussed in section 3.

This package aims to compute good estimates of the propensity scores from the data, check
their quality by assessing whether or not they have the balancing properties that we expect in
theory, and use them in computing treatment effect estimates.

∗The twang package and this tutorial were developed under NIDA grants R01 DA017507 and R01 DA015697-03
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2 An example to start

If you have not already done so, install twang by typing install.packages("twang"). twang re-
lies on other R packages, especially gbm and survey. You may have to run install.packages()
for these as well if they are not already installed. You will only need to do this step once. In
the future running update.packages() regularly will ensure that you have the latest versions
of the packages, including bug fixes and new features.

To start using twang, first load the package. You will have to do this step once for each R
session that you run.

> library(twang)

Loading required package: gbm
Loading required package: survival
Loading required package: splines
Loading required package: lattice
Loading required package: mgcv
This is mgcv 1.3-17
Loaded gbm 1.5-7
Loading required package: survey
Loading required package: xtable

To demonstrate the package we utilize data from Lalonde’s National Supported Work Demon-
stration analysis (Lalonde 1986, Dehejia & Wahba 1999, http://www.columbia.edu/~rd247/
nswdata.html). This dataset is provided with the twang package.

> data(lalonde)

R can read data from many other sources. The manual “R Data Import/Export,” available
at http://cran.r-project.org/doc/manuals/R-data.pdf, describes that process in detail.

For the lalonde dataset, the variable treat is the 0/1 treatment indicator, 1 indicates“treat-
ment”by being part of the National Supported Work Demonstration and 0 indicates“comparison”
cases drawn from the Current Population Survey. In order to estimate a treatment effect for this
demonstration program that is unbiased by pretreatment group differences on other observed
covariates, we include these covariates in a propensity score model of treatment assignment:
age, education, black, Hispanic, having no degree, married, earnings in 1974 (pretreatment), and
earnings in 1975 (pretreatment). Note that we specify no outcome variables at this time. The
ps() function is the primary method in twang for estimating propensity scores. This step is
computationally intensive and can take a few minutes.

> par(mfrow = c(1, 2))

> ps.lalonde <- ps(treat ~ age + educ + black +

+ hispan + nodegree + married + re74 + re75,

+ data = lalonde, plots = "optimize", stop.method = stop.methods[c("es.stat.mean",

+ "ks.stat.max")], n.trees = 2000, interaction.depth = 2,

+ shrinkage = 0.01, perm.test.iters = 0, verbose = FALSE)

The arguments to ps() require some discussion. The first argument specifies a formula
indicating that treat is the 0/1 treatment indicator and that the propensity score model should
predict treat from the eight covariates listed there separated by “+”. The “+” does not mean
that these variables are being summed nor does it mean that the model is linear. This is just R’s
notation for variables in the model. There is no need to specify interaction terms in the formula.
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Figure 1: Optimization of es.stat.mean and ks.stat.max. The horizontal axes indicate the
number of gbm iterations and the vertical axes indicate the measure of imbalance between the
two groups. For es.stat.mean the measure is the average effect size difference across covariates
between the treatment and comparison groups and for ks.stat.max the measure is the largest
of the KS statistics

There is also no need – and it can be counterproductive – to create indicator, or “dummy coded,”
variables to represent categorical covariates, provided the categorical variables are stored as a
factor or as ordered (see help(factor) for more details).

The next argument, data, indicates the dataset.
The plots argument controls the diagnostic plots that the ps function can create. They are

described in more detail in Section 2.2. For now plots="none" skips the plots, but they can be
created later using the plot() method. If the call to ps() includes an argument pdf.plots=TRUE
then all the plots are written to a pdf file in the current working directory (use getwd() to learn
what your working directory is and setwd() to set it). The default is pdf.plots=FALSE so that
the graphics appear on the screen.

n.trees, interaction.depth, and shrinkage are parameters for the gbm model that ps()
computes and stores. The resulting gbm object describes a family of candidate propensity score
models indexed by the number of gbm iterations from one to n.trees.

The stop.method argument takes a stop.method object which contains a set of rules and
measures for assessing the balance, or equivalence established on the pretreatment covariates of
the treatment and weighted control group. The ps function selects the optimal number of gbm
iterations to minimize the differences between the treatment and control groups as measured by
the rules of the given stop.method object. Figure 1 illustrates this process. For each panel, the
number of gbm iterations is plotted on the horizontal axis and the measure of balance is plotted
on the vertical axis. Each iteration adds complexity to the propensity score model giving it
greater modeling flexibility. The increased flexibility improves the balance of the two groups up
to a certain point after which additional iterations offer no improvement or actually make the
balance worse. In this example, iterating for 1188 iterations minimized one measure of balance,
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the average effect size difference and 1005 iterations minimized another measure, the largest of
the eight Kolmogorov-Smirnov (KS) statistics computed for the eight covariates. See Section 4.3
for a discussion of these and other balance measures.

The argument n.trees is the maximum number of iterations that ps() will run; ps() will
issue a warning if the estimated optimal number of iterations is too close to the bound selected
in this argument. Increase n.trees or decrease shrinkage if this warning appears.

perm.test.iters specifies whether p-values for KS statistics should be calculated using
Monte Carlo methods, which is slow but can be accurate, or estimated using an analytic
approximation that are fast, but produce poor estimates in the presence of many ties. If
perm.test.iters=0is called, then analytic approximations are used. If perm.test.iters=500 is
called, then 500 Monte Carlo trials are run to establish the reference distribution of KS statistics
for each covariate. Higher numbers of trials will produce more precise p-values.

The gbm package has various tools for exploring the relationship between the covariates and
the treatment assignment indicator if these are of interest. summary() computes the relative
influence of each variable for estimating the probability of treatment assignment. The gbm
estimates depend on the number of iterations at which the gbm model is evaluated, which is
specified by the n.trees argument in the summary method for gbm. In this example, we choose
the number of iterations to be the optimal number for minimizing the largest of the KS statistics.
This value can be found in the ps.lalonde$desc$ks.stat.max$n.trees. Figure 2 shows the
barchart of the relative influence if plot=TRUE in the call to summary().

> summary(ps.lalonde$gbm.obj, n.trees = ps.lalonde$desc$ks.stat.max$n.trees,

+ plot = FALSE)

var rel.inf
1 black 46.9463731
2 age 21.6836691
3 re74 16.2616167
4 re75 5.2521670
5 educ 4.5422582
6 married 3.8622970
7 nodegree 0.7353690
8 hispan 0.7162499

2.1 Assessing “balance” using balance tables

Having estimated the propensity scores, bal.table produces a table that shows how well the
resulting propensity score weights succeed in manipulating the control group so that its weighted
pretreatment characteristics match, or balance, those of the unweighted treatment group.

> lalonde.balance <- bal.table(ps.lalonde)

> lalonde.balance

$unw
tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 28.030 10.787 -0.309 -2.994 0.003 0.158 0.003
educ 10.346 2.011 10.235 2.855 0.055 0.547 0.584 0.111 0.074
black 0.843 0.365 0.203 0.403 1.757 19.371 0.000 0.640 0.000
hispan 0.059 0.237 0.142 0.350 -0.349 -3.413 0.001 0.083 0.317
nodegree 0.708 0.456 0.597 0.491 0.244 2.716 0.007 0.111 0.074
married 0.189 0.393 0.513 0.500 -0.824 -8.607 0.000 0.324 0.000
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Figure 2: Relative influence of the covariates on the estimated propensity score
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re74 2095.574 4886.620 5619.237 6788.751 -0.721 -7.254 0.000 0.447 0.000
re75 1532.055 3219.251 2466.484 3291.996 -0.290 -3.282 0.001 0.288 0.000

$es.stat.mean
tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 25.823 7.554 -0.001 -0.007 0.994 0.103 0.965
educ 10.346 2.011 10.490 2.179 -0.072 -0.484 0.629 0.070 1.000
black 0.843 0.365 0.844 0.363 -0.003 -0.024 0.981 0.001 1.000
hispan 0.059 0.237 0.051 0.220 0.036 0.386 0.699 0.009 1.000
nodegree 0.708 0.456 0.638 0.481 0.153 0.739 0.460 0.070 1.000
married 0.189 0.393 0.185 0.389 0.010 0.069 0.945 0.004 1.000
re74 2095.574 4886.620 1703.617 4113.466 0.080 0.689 0.491 0.063 1.000
re75 1532.055 3219.251 1285.866 2761.706 0.076 0.605 0.545 0.084 0.995

$ks.stat.max
tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 25.838 7.740 -0.003 -0.023 0.982 0.088 0.979
educ 10.346 2.011 10.541 2.242 -0.097 -0.656 0.512 0.092 0.967
black 0.843 0.365 0.835 0.371 0.021 0.185 0.853 0.008 1.000
hispan 0.059 0.237 0.051 0.221 0.035 0.380 0.704 0.008 1.000
nodegree 0.708 0.456 0.616 0.487 0.202 1.024 0.306 0.092 0.967
married 0.189 0.393 0.196 0.397 -0.017 -0.127 0.899 0.007 1.000
re74 2095.574 4886.620 1849.427 4298.730 0.050 0.433 0.665 0.050 1.000
re75 1532.055 3219.251 1345.452 2793.732 0.058 0.474 0.635 0.073 0.998

bal.table() returns information on the pretreatment covariates before and after weighting.
The returned object is a list with named components, one for an unweighted analysis (named unw)
and one for each stop.method specified, here es.stat.mean and ks.stat.max. McCaffrey et al
(2004) essentially used es.stat.mean for the analyses, but our more recent work has sometimes
used ks.stat.max. See Section 4.3 for a more detailed description of these choices.

The table contains the following items

tx.mn, ct.mn The treatment means and the propensity score weighted control means for each
of the variables. The unweighted table (unw) shows the unweighted means

tx.sd, ct.sd The treatment standard deviations and the propensity score weighted control stan-
dard deviations for each of the variables. The unweighted table (unw) shows the unweighted
standard deviations

std.eff.sz The standardized effect size, defined as the treatment group mean minus the control
group mean divided by the treatment group standard deviation (in discussions of propensity
scores this value is sometimes referred to as “standardized bias”). Occasionally, lack of
treatment group variance on a covariate results in very large (or infinite) standardized
effect sizes. For purposes of analyzing mean effect sizes across multiple covariates, we
therefore set all standardized effect sizes larger than 500 to NA (missing values).

stat, p Depending on whether the variable is continuous or categorical, stat is a t-statistic or
a χ2 statistic. p is the associated p-value

ks, ks.pval The Kolmogorov-Smirnov test statistic and its associated p-value. P-values for the
KS statistics are either derived from Monte Carlo simulations or analytic approximations,
depending on the specifications made in the perm.test.iters argument of the ps function.
For categorical variables this is just the χ2 test p-value
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Components of these tables are useful for demonstrating that pretreatment differences be-
tween groups on observed variables have been eliminated using the propensity score weights.
The xtable package aids in formatting for LATEXand Word documents. Table 1 shows the
results for ks.stat.max reformatted for a LATEXdocument. For Word documents, paste the
LATEXdescription of the table into a Word document, highlight it, Table->Convert->Text to
Table, then under “Separate text at” insert “&” in the Other: box. Additional formatting from
there will finish it.

> library(xtable)

> pretty.tab <- lalonde.balance$ks.stat.max[, c("tx.mn",

+ "ct.mn", "ks")]

> pretty.tab <- cbind(pretty.tab, lalonde.balance$unw[,

+ "ct.mn"])

> names(pretty.tab) <- c("E(Y1|t=1)", "E(Y0|t=1)",

+ "KS", "E(Y0|t=0)")

> xtable(pretty.tab, caption = "Balance of the treatment and comparison groups",

+ label = "tab:balance", digits = c(0, 2, 2,

+ 2, 2), align = c("l", "r", "r", "r", "r"))

E(Y1|t=1) E(Y0|t=1) KS E(Y0|t=0)
age 25.82 25.84 0.09 28.03
educ 10.35 10.54 0.09 10.23
black 0.84 0.83 0.01 0.20
hispan 0.06 0.05 0.01 0.14
nodegree 0.71 0.62 0.09 0.60
married 0.19 0.20 0.01 0.51
re74 2095.57 1849.43 0.05 5619.24
re75 1532.06 1345.45 0.07 2466.48

Table 1: Balance of the treatment and comparison groups

The summary() method for ps objects offers a compact summary of the sample sizes of the
groups and the balance measures. If perm.test.iters>0 was used to create the ps object, then
Monte Carlo simulation is used to estimate p-values for the maximum KS statistic that would
be expected across the covariates, had individuals with the same covariate values been assigned
to groups randomly. Thus, a p-value of 0.04 for max.ks.p indicates that the largest KS statistic
found across the covariates is larger than would be expected in 96% of trials in which the same
cases were randomly assigned to groups.

> summary(ps.lalonde)

type n.treat n.ctrl ess max.es
1 unw 185 429 429.00000 1.7567745
11 es.stat.mean 185 429 23.65842 0.1532303
12 ks.stat.max 185 429 29.28594 0.2023971

mean.es max.ks max.ks.p mean.ks iter
1 0.56872589 0.64044604 NA 0.27024507 NA
11 0.05388494 0.10259719 NA 0.05028627 1188
12 0.06050141 0.09226609 NA 0.05222526 1005
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In general, weighted means have greater sampling variance than unweighted means from a
sample of equal size. The effective sample size (ESS) of the weighted comparison group captures
this increase in variance as

ESS =

(∑
i∈C wi

)2∑
i∈C w2

i

. (1)

The ESS is approximately the number of observations from a simple random sample needed
to obtain an estimate with sampling variation equal to the sampling variation obtained with the
weighted comparison observations. Therefore, the ESS will give an estimate of the number of
comparison participants that are comparable to the treatment group. The ESS is an accurate
measure of the relative size of the variance of means when the weights are fixed or they are
uncorrelated with outcomes. Otherwise the ESS underestimates the effective sample size (Little
& Vartivarian, 2004). With propensity score weights, it is rare that weights are uncorrelated
with outcomes. Hence the ESS might be a lower bound on the effective sample size, but it still
serves as a useful measure of the effective number of control cases used in estimating weighted
means.

The ess column in the summary results shows the ESS for the estimated propensity scores.
Note that although the original comparison group had 429 cases, the propensity score estimates
effectively utilize only 23.7 or 29.3 of the comparison cases, depending on the rules and measures
used to estimate the propensity scores. While this may seem like a large loss of sample size,
this indicates that many of the original cases were unlike the treatment cases and, hence, were
not useful for isolating the treatment effect. Moreover, similar or even greater reductions in ESS
would be expected from alternative approaches to using propensity scores, such as matching or
stratification.

2.2 Graphical assessments of balance

The plot() method can generate useful diagnostic plots from the propensity score objects. This
command produces boxplots illustrating the spread of the estimated propensity scores in the
treatment and comparison groups. Whereas propensity score stratification requires considerable
overlap in these spreads, excellent covariate balance can often be achieved with propensity score
weights, even when the propensity scores estimated for the treatment and control groups show
no overlap.

> par(mfrow = c(1, 2))

> plot(ps.lalonde, plots = "ps boxplot")

> par(mfrow = c(1, 1))
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P-values from independent tests in which the null hypothesis is true have a uniform distribu-
tion. Therefore, a QQ plot comparing the quantiles of the observed p-values to the quantiles of
the uniform distribution illustrate whether group differences observed before and after weighting
are consistent with what we would expect to see had groups been formed by random assignment
(and hence the null hypothesis would be true). Setting plots="t pvalues" generates such QQ
plots.

> par(mfrow = c(1, 2))

> plot(ps.lalonde, plots = "t pvalues")

> par(mfrow = c(1, 1))
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Before weighting (closed circles), the groups have statistically significant differences on many
variables (i.e., p-values are near zero). After weighting (open circles) the p-values are above
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the 45-degree line, which represents the cumulative distribution of a uniform variable on [0,1].
This indicates that the p-values are even larger than would be expected in a randomized study.
plot() can create similar figures for KS statistic p-values by setting plots="ks pvalues".

> par(mfrow = c(1, 2))

> plot(ps.lalonde, plots = "es")

> par(mfrow = c(1, 1))
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The effect size plot illustrates the effect of weights on the magnitude of differences between
groups on each pretreatment covariate. These magnitudes are standardized using the standard-
ized effect size described earlier. In these plots, substantial reductions in effect sizes are observed
for most variables (blue lines), with only one variable showing an increase in effect size (red
lines), but only a seemingly trivial increase. Closed red circles indicate a statistically significant
difference, many of which occur before weighting, none after. In rare cases group differences are
very large relative to the treatment group standard deviations. In these cases, a warning appears
at the top of the figure indicating that some effect sizes were too large to plot.

2.3 Analysis of outcomes

A separate R package, the survey package, is useful for performing the outcomes analyses
using propensity score weights. Its statistical methods properly account for the weights when
computing standard error estimates. It is not a part of the standard R installation but running
install.packages("survey") in R will acquire the package from the R archive and install it.

> library(survey)

The get.weights function extracts the propensity score weights from a ps object. Those
weights may then be used as case weights in a svydesign object.

> lalonde$w <- get.weights(ps.lalonde, type = "ATT",

+ stop.method = "ks.stat.max")

> design.ps <- svydesign(ids = ~1, weights = ~w,

+ data = lalonde)
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The type argument to the get.weights function specifies whether the weights are for esti-
mating the treatment effect on the treated, computed as 1 for the treatment cases and p/(1− p)
for the comparison cases, or for estimating the treatment effect on the population, computed as
1/p for the treatment cases and 1/(1− p) for the comparison cases. The currently implemented
stop.method objects optimize for the treatment effect on the treated and it is possible that a
different set of propensity scores would be optimal for a treatment on the population analysis.
The third argument to get.weights selects which set of weights to utilize. If no stop.method
is selected then it returns the first set of weights.

The svydesign function from the survey package creates an object that stores the dataset
along with design information needed for analyses. See help(svydesign) for more details on
setting up svydesign objects.

The aim of the National Supported Work Demonstration analysis is to determine whether
the program was effective at increasing earnings in 1978. The propensity score adjusted test can
be computed with svyglm.

> glm1 <- svyglm(re78 ~ treat, design = design.ps)

> summary(glm1)

Call:
svyglm(re78 ~ treat, design = design.ps)

Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5662.3 743.0 7.621 9.65e-14 ***
treat 686.8 940.9 0.730 0.466
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 49496494)

Number of Fisher Scoring iterations: 2

The analysis estimates an increase in earnings of $687 for those that participated in the
NSW compared with similarly situated people observed in the CPS. The effect, however, does
not appear to be statistically significant.

Some authors have recommended utilizing both propensity score adjustment and additional
covariate adjustment to minimize mean square error or to obtain “doubly robust” estimates of
the treatment effect (Huppler-Hullsiek & Louis 2002, Bang & Robins 2005). These estimators
are consistent if either the propensity scores are estimated correctly or the regression model is
specified correctly. For example, note that the balance table for ks.stat.max made the two
groups more similar on nodegree, but still some differences remained, 70.8% of the treatment
group had no degree while 61.6% of the comparison group had no degree. While linear regression
is sensitive to model misspecification when the treatment and comparison groups are dissimilar,
the propensity score weighting has made them more similar, perhaps enough so that additional
modeling with covariates can adjust for any remaining differences. In addition to potential bias
reduction, the inclusion of additional covariates can reduce the standard error of the treatment
effect if some of the covariates are strongly related to the outcome.
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> glm2 <- svyglm(re78 ~ treat + nodegree, design = design.ps)

> summary(glm2)

Call:
svyglm(re78 ~ treat + nodegree, design = design.ps)

Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6789.3 1207.2 5.624 2.84e-08 ***
treat 855.6 968.2 0.884 0.377
nodegree -1829.9 1110.8 -1.647 0.100 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 48758709)

Number of Fisher Scoring iterations: 2

Adjusting for the remaining group difference in the nodegree variable slightly increased the
estimate of the program’s effect to $856, but the difference is still not statistically significant.
We can further adjust for the other covariates, but that too in this case has little effect on the
estimated program effect.

> glm3 <- svyglm(re78 ~ treat + age + educ + black +

+ hispan + nodegree + married + re74 + re75,

+ design = design.ps)

> summary(glm3)

Call:
svyglm(re78 ~ treat + age + educ + black + hispan + nodegree +

married + re74 + re75, design = design.ps)

Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.106e+03 4.016e+03 -0.524 0.60016
treat 7.439e+02 9.224e+02 0.806 0.42030
age 6.853e+00 5.200e+01 0.132 0.89521
educ 7.178e+02 2.408e+02 2.981 0.00299 **
black -8.684e+02 9.518e+02 -0.912 0.36196
hispan 6.667e+02 1.613e+03 0.413 0.67954
nodegree 5.343e+02 1.473e+03 0.363 0.71685
married 5.419e+02 1.046e+03 0.518 0.60473
re74 4.375e-02 1.619e-01 0.270 0.78704
re75 1.490e-01 1.736e-01 0.858 0.39115
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 46897930)

Number of Fisher Scoring iterations: 2

2.4 Estimating the program effect using linear regression

The more traditional regression approach to estimating the program effect would fit a linear
model with a treatment indicator and linear terms for each of the covariates.

> glm4 <- lm(re78 ~ treat + age + educ + black +

+ hispan + nodegree + married + re74 + re75,

+ data = lalonde)

> summary(glm4)

Call:
lm(formula = re78 ~ treat + age + educ + black + hispan + nodegree +

married + re74 + re75, data = lalonde)

Residuals:
Min 1Q Median 3Q Max

-13595 -4894 -1662 3929 54570

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.651e+01 2.437e+03 0.027 0.9782
treat 1.548e+03 7.813e+02 1.982 0.0480 *
age 1.298e+01 3.249e+01 0.399 0.6897
educ 4.039e+02 1.589e+02 2.542 0.0113 *
black -1.241e+03 7.688e+02 -1.614 0.1071
hispan 4.989e+02 9.419e+02 0.530 0.5966
nodegree 2.598e+02 8.474e+02 0.307 0.7593
married 4.066e+02 6.955e+02 0.585 0.5590
re74 2.964e-01 5.827e-02 5.086 4.89e-07 ***
re75 2.315e-01 1.046e-01 2.213 0.0273 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6948 on 604 degrees of freedom
Multiple R-Squared: 0.1478, Adjusted R-squared: 0.1351
F-statistic: 11.64 on 9 and 604 DF, p-value: < 2.2e-16

This model estimates a rather strong treatment effect, estimating a program effect of $1548
with a p-value=0.048. Several variations of this regression approach also estimate strong pro-
gram effects. For example using square root transforms on the earnings variables yields a p-
value=0.016. These estimates, however, are very sensitive to the model structure since the treat-
ment and control subjects differ greatly as seen in the unweighted balance comparison ($unw)
from bal.table(ps.lalonde).
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2.5 Propensity scores estimated from logistic regression

Propensity score analysis is intended to avoid problems associated with the misspecification of
covariate adjusted models of outcomes, but the quality of the balance and the treatment effect
estimates can be sensitive to the method used to estimate the propensity scores. Consider
estimating the propensity scores using logistic regression instead of ps().

> ps.logit <- glm(treat ~ age + educ + black + hispan +

+ nodegree + married + re74 + re75, data = lalonde,

+ family = binomial)

> lalonde$w.logit <- rep(1, nrow(lalonde))

> lalonde$w.logit[lalonde$treat == 0] <- exp(predict(ps.logit,

+ subset(lalonde, treat == 0)))

predict() for logistic regression model produces estimates on the log-odds scale by default.
Exponentiating those predictions for the comparison subjects gives the propensity score weights
p/(1−p). dx.wts() from the twang package diagnoses the balance for an arbitrary set of weights
producing a balance table.

> bal.logit <- dx.wts(lalonde$w.logit, data = lalonde,

+ vars = c("age", "educ", "black", "hispan",

+ "nodegree", "married", "re74", "re75"),

+ treat.var = "treat", perm.test.iters = 0)

> print(bal.logit)

type n.treat n.ctrl ess max.es mean.es
1 unw 185 429 429.00000 1.7567745 0.56872589
2 185 429 99.81539 0.1188496 0.03188410

max.ks mean.ks iter
1 0.6404460 0.27024507 NA
2 0.3078039 0.09302319 NA

For propensity score weights estimated with logistic regression, the largest KS statistic was
reduced from the unweighted sample’s largest KS of 0.64 to 0.31, which is still quite a large
KS statistic. Table 2 shows the details of the balance of the treatment and comparison groups.
The means of the two groups appear to be quite similar while the KS statistic shows substantial
differences in their distributions.

> pretty.tab <- bal.table(bal.logit)[[2]][, c("tx.mn",

+ "ct.mn", "ks")]

> pretty.tab <- cbind(pretty.tab, bal.table(bal.logit)[[1]]$ct.mn)

> names(pretty.tab) <- c("E(Y1|t=1)", "E(Y0|t=1)",

+ "KS", "E(Y0|t=0)")

> xtable(pretty.tab, caption = "Logistic regression estimates of the propensity scores",

+ label = "tab:balancelogit", digits = c(0,

+ 2, 2, 2, 2), align = c("l", "r", "r",

+ "r", "r"))

Table 3 compares the balancing quality of the propensity score weights directly with one
another.
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E(Y1|t=1) E(Y0|t=1) KS E(Y0|t=0)
age 25.82 24.97 0.31 28.03
educ 10.35 10.40 0.04 10.23
black 0.84 0.84 0.00 0.20
hispan 0.06 0.06 0.00 0.14
nodegree 0.71 0.69 0.02 0.60
married 0.19 0.17 0.02 0.51
re74 2095.57 2106.05 0.23 5619.24
re75 1532.06 1496.54 0.13 2466.48

Table 2: Logistic regression estimates of the propensity scores

n.treat ess max.es mean.es max.ks mean.ks
unw 185 429.00 1.76 0.57 0.64 0.27
logit 185 99.82 0.12 0.03 0.31 0.09
es.stat.mean 185 23.66 0.15 0.05 0.10 0.05
ks.stat.max 185 29.29 0.20 0.06 0.09 0.05

Table 3: Summary of the balancing properties of logistic regression and gbm

> design.logit <- svydesign(ids = ~1, weights = ~w.logit,

+ data = lalonde)

> glm6 <- svyglm(re78 ~ treat, design = design.logit)

> summary(glm6)

Call:
svyglm(re78 ~ treat, design = design.logit)

Survey design:
svydesign(ids = ~1, weights = ~w.logit, data = lalonde)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5135.1 588.9 8.719 <2e-16 ***
treat 1214.1 824.7 1.472 0.142
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 49598072)

Number of Fisher Scoring iterations: 2

The analysis estimates an increase in earnings of $1214 for those that participated in the
NSW compared with similarly situated people observed in the CPS. Table 4 compares all of the
treatment effect estimates.
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Treatment effect PS estimate Linear adjustment
$687 GBM, minimize KS none
$856 GBM, minimize KS nodegree
$744 GBM, minimize KS all

$1548 None all
$1214 Logistic regression none
$1237 Logistic regression all

Table 4: Treatment effect estimates by various methods

3 Non-response weights

The twang package was designed to estimate propensity score weights for the evaluation of
treatment effects in observational or quasi-experimental studies. However, we find that the
package includes functions and diagnostic tools that are highly valuable for other applications,
such as for generating and diagnosing nonresponse weights for survey nonresponse or study
attrition. We now present an example that uses the tools in twang. This example uses the subset
of the US Sustaining Effects Study data distributed with the HLM software (Bryk, Raudenbush,
Congdon, 1996) and also available in the R package mlmRev. The data include mathematics
test scores for 1721 students in kindergarten to fourth grade. They also include the students
race (Black, Hispanic, or other), gender, an indicator for whether or not the student had been
retained in grade, the percent low income students at the school, the school size, the percent
of mobile students, the students’ grade-levels, student and school IDs, and grades converted to
year by centering. The study analysis plans to analyze growth in math achievement from grade
1 to grade 4 using only students with complete data. However, the students with complete data
differ from other students. To reduce bias that could potentially result from excluding incomplete
cases, our analysis plan is to weight complete cases with nonresponse weights.

The goal of nonresponse weighting is to develop weights for the respondents that make them
look like the entire sample – both the respondents and nonrespondents. Since, the respondents
already look like themselves, the hard part is to figure out how well each respondent represents
the nonrespondents. These two functions served by each respondent can be understood as
two components of the nonresponse weight. Nonresponse weights equal the reciprocal of the
probability of response and are applied only to respondents. Let p denote the probability of
response and and 1/p denote the nonresponse weight. Using basic algebra we can rewrite the
nonresponse weights:

1
p

= 1 +
1 − p

p
(2)

Written in this way, the nonresponse weight can be viewed as having two components, a compo-
nent for the respondent (which equals 1) and a component for the nonrespondents ((1 − p)/p)
that the respondent is to represent in the analysis. This second component is a respondent weight
designed to make the respondents look like the non-respondents, which is a problem identical to
that which the ps() function is designed to solve; it finds weights that make the control group
look like the treatment group in terms of the distribution of their covariates. Hence if we call the
nonrespondents the “treatment” group and respondents the “control” group then ps() function
can provide estimates of (1 − p)/p, the second component of the nonresponse weight, and the
diagnostic tools in twang can be used to diagnose the weights. To obtain the final nonresponse
weight we just add 1 to the weights from ps().

Before we can generate nonresponse weights, we need to prepare the data using the following
commands.
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First we load the data.

> data(egsingle)

Next we create the patterns of grades for which students have responses

> tmp <- sapply(split(egsingle, egsingle$childid),

+ function(x) {

+ paste(as.character(x$grade), collapse = "")

+ })

identify students with test scores for every grade from 1 to 4

> tmp <- data.frame(childid = names(tmp), gpatt = tmp,

+ resp = as.numeric((1:length(tmp)) %in% grep("1234",

+ as.character(tmp))))

and merge this back to create a single data frame

> egsingle <- merge(egsingle, tmp)

Because nonresponse is a student-level variable rather than a student-by-year-level variable
we create one record per student.

> egsingle.one <- unique(egsingle[, -c(3:6)])

We also create a race variable

> egsingle.one$race <- as.factor(race <- ifelse(egsingle.one$black ==

+ 1, 1, ifelse(egsingle.one$hispanic == 1, 2,

+ 3)))

As discussed above, to use ps() to estimate nonresponse, we need to let nonrespondents
be the treatment group by modeling an indicator of nonresponse rather than an indicator of
response. We create this indicator and then we are set to estimate weights.

> egsingle.one$nresp <- 1 - egsingle.one$resp

> par(mfrow = c(1, 2))

> egsingle.ps <- ps(nresp ~ race + female + size +

+ lowinc + mobility, data = egsingle.one, plots = "optimize",

+ stop.method = stop.methods[c("es.stat.mean",

+ "ks.stat.max")], n.trees = 2500, verbose = FALSE)

The optimal number of iterations for gbm to minimize the maximum KS statistic is 190 and
the optimal number of iterations for gbm to minimize the average effect size is 1560. The weights
do an excellent job matching the distribution of the respondent group covariates to those of the
nonrespondents as shown in Table 5.

> pretty.tab <- bal.table(egsingle.ps)$ks.stat.max[,

+ c("tx.mn", "ct.mn", "std.eff.sz", "ks")]

> names(pretty.tab) <- c("Non-responders", "Weighted responders",

+ "Std ES", "KS")

> xtable(pretty.tab, caption = "Balance of the nonrespondents and respondents",

+ label = "tab:balance2", digits = c(0, 2, 2,

+ 2, 2), align = c("l", "r", "r", "r", "r"))
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Figure 3: Optimization of es.stat.mean and ks.stat.max for nonresponse weighting of egsingle
data. The horizontal axes indicate the number of iterations and the vertical axes indicate the
measure of imbalance between the two groups. For es.stat.mean the measure is the average
effect size difference between the two groups and for ks.stat.max the measure is the largest of
the KS statistics
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Non-responders Weighted responders Std ES KS
race:1 0.73 0.71 0.04 0.02
race:2 0.16 0.14 0.04 0.01
race:3 0.11 0.14 −0.11 0.04
female:Female 0.52 0.48 0.08 0.04
female:Male 0.48 0.52 −0.08 0.04
size 761.33 762.45 −0.00 0.04
lowinc 80.75 80.61 0.01 0.04
mobility 36.44 35.43 0.07 0.04

Table 5: Balance of the nonrespondents and respondents

The final step is to add 1 to the weights to get the final nonresponse weight and then add
the nonresponse weights to the respondent data so analyses can proceed.

> egsingle.one$wgt <- 1 + get.weights(egsingle.ps,

+ type = "ATT", stop.method = "ks.stat.max")

> egsinge.resp <- merge(subset(egsingle, subset = resp ==

+ 1), subset(egsingle.one, subset = resp ==

+ 1, select = c(childid, wgt)))

4 The details of twang

4.1 Propensity score weighting

Propensity score weighting (Rosenbaum 1987, Wooldridge 2002, Hirano and Imbens 2001, Mc-
Caffrey et al. 2004) reweights comparison cases so that the distribution of their features match
the distribution of features of the treatment cases. Let f(x|t = 1) be the distribution of features
for the treatment cases and f(x|t = 0) be the distribution of features for the comparison cases. If
treatments were randomized then we would expect these two distributions to be similar. When
they differ we will construct a weight, w(x), so that

f(x|t = 1) = w(x)f(x|t = 0). (3)

For example, if f(age=65, sex=F|t = 1) = 0.10 and f(age=65, sex=F|t = 1) = 0.05 (i.e. 10%
of the treatment cases and 5% of the comparison cases are 65 year old females) then we need
to give a weight of 2.0 to every 65 year old female in the comparison group so that they have
the same representation as in the treatment group. More generally, we can solve (3) for w(x)
and apply Bayes Theorem to the numerator and the denominator to give an expression for the
propensity score weight for comparison cases,

w(x) = K
f(t = 1|x)
f(t = 0|x)

= K
P (t = 1|x)

1 − P (t = 1|x)
, (4)

where K is a normalization constant that will cancel out in the outcomes analysis. Equation
(4) indicates that if we assign a weight to comparison case i equal to the odds that a case with
features xi would be exposed to the treatment, then the distribution of their features would
balance. Note that for comparison cases with features that are atypical of treatment cases, the
propensity score P (t = 1|x) would be near 0 and would produce a weight near 0. On the other
hand, comparison cases with features typical of the treatment cases would receive larger weights.
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4.2 Estimating the propensity score

In randomized studies P (t = 1|x) is known and fixed in the study design. In observational
studies the propensity score is unknown and must be estimated, but poor estimation of the
propensity scores can cause just as much of a problem for estimating treatment effects as poor
regression modeling of the outcome. Linear logistic regression is the common method for es-
timating propensity scores, and can suffice for many problems. Linear logistic regression for
propensity scores estimates the log-odds of a case being in the treatment given x as

log
P (t = 1|x)

1 − P (t = 1|x)
= β′x (5)

Usually, β is selected to maximize the logistic log-likelihood

`β =
1
n

n∑
i=1

tiβ
′xi − log (1 + exp(β′xi)) (6)

Maximizing (6) provides the maximum likelihood estimates of β. However, in an attempt
to remove as much confounding as possible, observational studies often record data on a large
number of potential confounders, many of which can be correlated with one another. Standard
methods for fitting logistic regression models to such data with the iteratively reweighted least
squares algorithm can be statistically and numerically unstable. To improve the propensity score
estimates we might also wish to include non-linear effects and interactions in x. The inclusion
of such terms only increases the instability of the models.

One increasingly popular method for fitting models with numerous correlated variables is the
lasso (least absolute subset selection and shrinkage operator) introduced in statistics in Tibshirani
(1996). For logistic regression, lasso estimation replaces (6) with a version that penalizes the
absolute magnitude of the coefficients

`β =
1
n

n∑
i=1

tiβ
′xi − log (1 + exp(β′xi)) − λ

J∑
j=1

|βj | (7)

The second term on the right-hand side of the equation is the penalty term since it decreases
the overall of `β when there are coefficient that are large in absolute value. Setting λ = 0 returns
the standard (and potentially unstable) logistic regression estimates of β. Setting λ to be very
large essentially forces all of the βj to be equal to 0 (the penalty excludes β0). For a fixed value
of λ the estimated β̂ can have many coefficients exactly equal to 0, not just extremely small but
precisely 0, and only the most powerful predictors of t will be non-zero. As a result the absolute
penalty operates as a variable selection penalty. In practice, if we have several predictors of t that
are highly correlated with each other, the lasso tends to include all of them in the model, shrink
their coefficients toward 0, and produce a predictive model that utilizes all of the information
in the covariates, producing a model with greater out-of-sample predictive performance than
models fit using variable subset selection methods.

Our aim is to include as covariates all piecewise constant functions of the potential con-
founders and their interactions. That is, in x we will include indicator functions for continu-
ous variables like I(age < 15), I(age < 16), . . . , I(age < 90), etc., for categorical variables like
I(sex = male), I(prior MI = TRUE), and interactions among them like I(age < 16)I(sex =
male)I(prior MI = TRUE). This collection of basis functions spans a plausible set of propensity
score functions, are computationally efficient, and are flat at the extremes of x reducing the
likelihood of propensity score estimates near 0 and 1 that can occur with linear basis functions
of x. Theoretically with the lasso we can estimate the model in (7), selecting a λ small enough
so that it will eliminate most of the irrelevant terms and yield a sparse model with only the
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most important main effects and interactions. Boosting (Friedman 2001, 2003, Ridgeway 1999)
effectively implements this strategy using a computationally efficient method that Efron et al.
(2004) showed is equivalent to optimizing (7). With boosting it is possible to maximize (7) for a
range of values of λ with no additional computational effort than for a specific value of λ. We use
boosted logistic regression as implemented in the generalized boosted modeling (gbm) package
in R (Ridgeway 2005).

4.3 Evaluating the propensity score weights

As with regression analyses, propensity score methods cannot adjust for unmeasured covariates
that are uncorrelated with the observed covariates. Nonetheless, the quality of the adjustment
for the observed covariates achieved by propensity score weighting is easy to evaluate. The
estimated propensity score weights should equalize the distributions of the cases’ features as in
(3). This implies that weighted statistics of the covariates of the comparison group should equal
the same statistics for the treatment group. For example, the weighted average of the age of
comparison cases should equal the average age of the treatment cases. To assess the quality of
the propensity score weights one could compare a variety of statistics such as means, medians,
variances, and Kolmogorov-Smirnov statistics for each covariate as well as interactions. The
twang package provides both the standardized effect sizes and KS statistics and p-values testing
for differences in the means and distributions of the covariates for analysts to use in assessing
balance.

The twang package encodes decisions on how to assess the quality of the balance in stop.method
objects which determine how to select the gbm iterations and tune the weights. There are three
stop.method objects included with twang that compare means, KS statistics, and within propen-
sity score strata mean differences. A valid stop.method object is a list with the following
components

metric This is a function that takes weights or propensity scores either as log propensity score
weights (useful for direct optimization of the weights), weights for just the control group, or
from a model object like gbm. This function must also define how missing data are handled
and whether to handle each level of a categorical variable separately or to treat them all as
one variable. The function must return a single number, smaller values indicating better
balance between the two groups. See the help files and code for ks.stat and strat.stat
for examples

rule.summary This is a function that defines how to combine the balance measures across all
the variables. twang currently uses mean and max. This function is passed to metric

direct This is a logical parameter that indicates whether twang should try to directly optimize
the weights using a nonlinear optimizer, nlm. This method is experimental and can take a
very long time for large datasets.

na.action A character string that is passed to metric to indicate how to handle missing data.
Current options are

1. “level,” treat missing items as a separate level of a categorical variable. If the variable is
continuous then separate it out as a distinct variable and try to balance on missingness

2. “exclude,” drop missing data

3. “lowest,” recode missing data to be the lowest observed value for continuous variables.
For factors this is equivalent to “level”

name A character string for labeling results
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The ks.stat.max stop.method has metric=ks.stat, rule.summary=max, direct=FALSE,
na.action="level", and name="ks.stat.max". Advanced users interested in designing and ex-
perimenting with their own measures of balance may do so by implementing a new stop.method
and passing it to the stop.method argument of ps().

4.4 Analysis of outcomes

With propensity score analyses the final outcomes analysis is generally straightforward, while
the propensity score estimation may require complex modeling. Once we have propensity score
weights that equalize the distribution of features of treatment and control cases, we give each
treatment case a weight of 1 and each comparison case a weight wi = p(xi)/(1−p(xi)). We then
estimate the treatment effect estimate with a weighted regression model that contains only a
treatment indicator. No additional covariates are needed if the propensity score weights account
for differences in x.

A combination of propensity score weighting and covariate adjustment can be useful for
several reasons. First, the propensity scores may not have been able to completely balance all
of the covariates. The inclusion of these covariates in addition to the treatment indicator in
a weighted regression model may correct this if the imbalance is relatively small. Second, in
addition to exposure, the relationship between some of the covariates and the outcome may
also be of interest. Their inclusion can provide coefficients that can estimate the direction and
magnitude of the relationship. Third, as with randomized trials, stratifying on covariates that
are highly correlated with the outcome can improve the precision of estimates. Lastly, the some
treatment effect estimators that utilize an outcomes regression model and propensity scores are
“doubly robust” in the sense that if either the propensity score model is correct or the regression
model is correct then the treatment effect estimator will be unbiased (Bang & Robins 20005).
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