as.character.outcome | Convert outcome vector to character vector |
as.data.frame.outcome | Convert outcome vector to data frame |
as.matrix.outcome | Convert outcome vector to matrix |
as.outcome | Convert object to outcome vector |
as.outcome.Surv | Convert Surv vector to outcome vector |
as.Surv | Convert object to Surv vector |
as.Surv.outcome | Convert outcome vector to Surv vector |
as.Surv.Surv | Trivial function |
batch.model | Perform modeling |
detune | Tune parameters of modeling procedures |
dim.outcome | Dimension of an outcome vector |
emil | Introduction to the emil package |
emil.extensions | Extending the emil framework with user-defined methods |
emil.fit.caret | Fit a model using the caret package |
emil.fit.cforest | Fit conditional inference forest |
emil.fit.glmnet | Fit GLM with LASSO, Ridge or elastic net regularization. |
emil.fit.lda | Fit linear discriminant |
emil.fit.lm | Fit a linear model fitted with ordinary least squares |
emil.fit.pamr | Fit nearest shrunken centroids model. |
emil.fit.qda | Fit quadratic discriminant. |
emil.fit.randomForest | Fit random forest. |
emil.predict.caret | Predict using a caret method |
emil.predict.cforest | Predict with conditional inference forest |
emil.predict.glmnet | Predict using generalized linear model with elastic net regularization |
emil.predict.lda | Prediction using already trained prediction model |
emil.predict.lm | Prediction using linear model |
emil.predict.pamr | Prediction using nearest shrunken centroids. |
emil.predict.qda | Prediction using already trained classifier. |
emil.predict.randomForest | Prediction using random forest. |
emil.vimp.pamr | Variable importance of nearest shrunken centroids. |
emil.vimp.randomForest | Variable importance of random forest. |
error.fun | Performance estimation functions |
error.rate | Performance estimation functions |
evaluate.modeling | Performance estimation of modeling procedures |
factor.events | Get events on factor form |
fill | Replace values with something else |
fit | Fit a model |
image.crossval | Visualize resampling scheme |
image.resample | Visualize resampling scheme |
impute | Regular imputation |
impute.knn | Regular imputation |
impute.median | Regular imputation |
index.fit | Convert a fold to row indexes of fittdng or test set |
index.test | Convert a fold to row indexes of fittdng or test set |
integer.events | Return events in integer form |
is.blank | Wrapper for several methods to test if a variable is empty |
is.na.outcome | Check for missing values |
is.outcome | Test if object is of class outcome |
is.tunable | Tune parameters of modeling procedures |
is.tuned | Tune parameters of modeling procedures |
length.outcome | Length of an outcome vector |
modeling.procedure | Setup a modeling procedure |
mse | Performance estimation functions |
na.fill | Replace values with something else |
neg.auc | Performance estimation functions |
neg.gmpa | Negative geometric mean of class specific predictive accuracy |
neg.harrell.C | Performance estimation functions |
nice.require | Load a package and offer to install if missing |
outcome | Create a vector of outcomes |
p.value | Extraction of p-value from a statistical test |
p.value.coxph | Extract p-value from a Cox proportional hazards model |
p.value.crr | Extracts p-value from a competing risk model |
p.value.cuminc | Extract p-value from a cumulative incidence estimation |
p.value.survdiff | Extracts p-value from a logrank test |
plot.outcome | Plot outcome vector |
pre.center | Data preprocessing |
pre.impute.knn | kNN imputation |
pre.impute.median | Data preprocessing |
pre.pamr | PAMR adapted dataset pre-processing |
pre.process | Data preprocessing |
pre.scale | Data preprocessing |
pre.split | Data preprocessing |
predict.modeling.procedure | Predict the response of unknown observations |
print.outcome | Print outcome vector |
resample | Resampling schemes |
resample.crossval | Resampling schemes |
resample.holdout | Resampling schemes |
resample.mapply | Compare true response to resampled predictions |
reset.warn.once | Print a warning message if not printed earlier |
rmse | Performance estimation functions |
subframe | Extract and organize predictions according to a resampling scheme |
subresample | Generate resampling subschemes |
subtree | Extract a subset of a tree of nested lists |
trace.msg | Print a timestamped and indented log message |
tune | Tune parameters of modeling procedures |
vimp | Variable importance of a fitted model |
warn.once | Print a warning message if not printed earlier |
weighted.error.rate | Weighted error rate |
[.outcome | Extract |