rags2ridges-package |
Ridge estimation for high-dimensional precision matrices |
adjacentMat |
Transform real matrix into an adjacency matrix |
conditionNumberPlot |
Visualize the spectral condition number against the regularization parameter |
covML |
Maximum likelihood estimation of the covariance matrix |
default.target |
Generate a (data-driven) default target for usage in ridge-type shrinkage estimation |
edgeHeat |
Visualize (precision) matrix as a heatmap |
evaluateS |
Evaluate numerical properties square matrix |
evaluateSfit |
Visual inspection of the fit of a regularized precision matrix |
fullMontyS |
Wrapper function |
GGMblockNullPenalty |
Generate the distribution of the penalty parameter under the null hypothesis of block-independence |
GGMblockTest |
Test for block-indepedence |
GGMnetworkStats |
Gaussian graphical model network statistics |
GGMpathStats |
Gaussian graphical model node pair path statistics |
KLdiv |
Kullback-Leibler divergence between two multivariate normal distributions |
loss |
Evaluate regularized precision under various loss functions |
optPenalty.aLOOCV |
Select optimal penalty parameter by approximate leave-one-out cross-validation |
optPenalty.LOOCV |
Select optimal penalty parameter by leave-one-out cross-validation |
optPenalty.LOOCVauto |
Automatic search for optimal penalty parameter |
pcor |
Compute partial correlation matrix or standardized precision matrix |
rags2ridges |
Ridge estimation for high-dimensional precision matrices |
ridgePathS |
Visualize the regularization path |
ridgeS |
Ridge estimation for high-dimensional precision matrices |
sparsify |
Determine the support of a partial correlation/precision matrix |
symm |
Symmetrize matrix |
Ugraph |
Visualize undirected graph |