Joint Analysis and Imputation of Incomplete Data


[Up] [Top]

Documentation for package ‘JointAI’ version 0.1.0

Help Pages

JointAI-package JointAI: Joint Analysis and Imputation of Missing Values
add_samples Add samples to an object of class JointAI
default_hyperpars Get default values for hyperparameters Prints the list of default values for the hyperparameters
densplot Plot posterior density from JointAI model
densplot.JointAI Plot posterior density from JointAI model
get_imp_meth Find default imputation methods and order
get_MIdat Extract multiple imputed datasets (and export to SPSS)
glm_imp Joint analysis and imputation of incomplete data
GR_crit Gelman-Rubin criterion for convergence
JointAI JointAI: Joint Analysis and Imputation of Missing Values
JointAIObject Fitted object of class JointAI
lme_imp Joint analysis and imputation of incomplete data
lm_imp Joint analysis and imputation of incomplete data
longDF Longitudinal example dataset
MC_error Monte Carlo error
md_pattern Missing data pattern
model_imp Joint analysis and imputation of incomplete data
plot.MCElist Monte Carlo error
predDF Create a new dataframe for prediction
predDF.formula Create a new dataframe for prediction
predDF.JointAI Create a new dataframe for prediction
predict.JointAI Predict values from an object of class JointAI
print.summary.JointAI Summary of an object of class JointAI
summary.JointAI Summary of an object of class JointAI
traceplot Traceplot of a JointAI model
traceplot.JointAI Traceplot of a JointAI model
wideDF Cross-sectional example dataset