JointAI-package | JointAI: Joint Analysis and Imputation of Missing Values |
add_samples | Add samples to an object of class JointAI |
default_hyperpars | Get default values for hyperparameters Prints the list of default values for the hyperparameters |
densplot | Plot posterior density from JointAI model |
densplot.JointAI | Plot posterior density from JointAI model |
get_imp_meth | Find default imputation methods and order |
get_MIdat | Extract multiple imputed datasets (and export to SPSS) |
glm_imp | Joint analysis and imputation of incomplete data |
GR_crit | Gelman-Rubin criterion for convergence |
JointAI | JointAI: Joint Analysis and Imputation of Missing Values |
JointAIObject | Fitted object of class JointAI |
lme_imp | Joint analysis and imputation of incomplete data |
lm_imp | Joint analysis and imputation of incomplete data |
longDF | Longitudinal example dataset |
MC_error | Monte Carlo error |
md_pattern | Missing data pattern |
model_imp | Joint analysis and imputation of incomplete data |
plot.MCElist | Monte Carlo error |
predDF | Create a new dataframe for prediction |
predDF.formula | Create a new dataframe for prediction |
predDF.JointAI | Create a new dataframe for prediction |
predict.JointAI | Predict values from an object of class JointAI |
print.summary.JointAI | Summary of an object of class JointAI |
summary.JointAI | Summary of an object of class JointAI |
traceplot | Traceplot of a JointAI model |
traceplot.JointAI | Traceplot of a JointAI model |
wideDF | Cross-sectional example dataset |