Dynamic Model of Choice with Parallel Computation, and C++ Capabilities


[Up] [Top]

Documentation for package ‘ggdmc’ version 0.1.3.9

Help Pages

ggdmc-package Supersonic DMC
acf.dmc Plot an Autocorrelation Matrix
censor Censor missing values and RT outliers
data.model.dmc Bind Data and Models
ddmc Compute Probability Density of Drift-Diffusion Model
ddmc_parallel Compute Probability Density of Drift-Diffusion Model
density.dmc Calculate Probability Density for an Experimental Condition
dprior Calculate Prior Probability Density for an EAM
Dstats.ddm Calculate Dstats of DDM Density
dtnorm Truncated Normal Distribution
effectiveSize.dmc Effective Sample Size for Estimating the Mean
fac2df Convert factor levels to a data frame
gelman.diag.dmc Gelman and Rubin Convergence Diagnostic
getAccumulatorMatrix Map a parameter vector to an accumulator matrix
get_os get_os Function
ggdmc Supersonic DMC
g_minus Calculate Drift-diffusion Probability Density
g_minus_parallel Calculate Drift-diffusion Probability Density
g_plus Calculate Drift-diffusion Probability Density
g_plus_parallel Calculate Drift-diffusion Probability Density
h.run.dmc Fit an EAM with Multiple Participants
h.samples.dmc Set up a DMC Sample with Multiple Participants
h.simulate.dmc Simulate Choice-RT Data for Multiple Participants
initialise_data Set up a DMC Sample for a Participant
initialise_hyper Set up a DMC Sample for Multiple Participants
likelihood Calculate Log-Likelihood
likelihood.default Calculate Log-Likelihood
likelihood.norm Calculate Log-Likelihood
likelihood.rd Calculate Log-Likelihood
mcmc.list.dmc Create a mcmc.list in DMC format
model.dmc Creating a Model Object
p.df.dmc Gets Parameter Data Frame
pairs.dmc Create a Plot Matrix of Posterior Simulations
phi.as.mcmc.list Convert Phi to a Theta Vector
pick.stuck.dmc Find Stuck Chains
plot.dmc Plot DMC Samples
plot.dmc.list Plot a DMC Sample with Multiple Participants
plot.hyper Plot DMC Samples at the Hyper level
plot.pp.ggdmc Posterior Predictive Plot
plot_cell_density Plot Distributions for Each Cell
plot_dist Plot Cell Density
plot_prior Plot Prior Probability Density
plot_priors Plot Prior Probability Density
post.predict.ggdmc Simulate Post-predictive Sample
print_cell_p Print accumulator x internal parameter type matrix for each cell
prior.p.dmc Makes a list of prior distribution parameters.
profile.dmc Profile a DMC Object
rprior Generate Random Numbers from Prior Probability Distribution
rtnorm Truncated Normal Distribution
run.dmc run function
run_data Run a Bayesian EAM Model for Fixed-effect or Random-effect
run_data_parallel Run a Bayesian EAM Model for Fixed-effect or Random-effect
run_hyper Run a Bayesian EAM Model for Fixed-effect or Random-effect
run_hyper_parallel Run a Bayesian EAM Model for Fixed-effect or Random-effect
samples.dmc Initialising a DMC samples
simulate.dmc Simulate Responses from an EAM
summary.dmc Summarise a DMC Sample with One Participant
summary.dmc.list Summarise a DMC Sample with Multiple Participants
summary.hyper Summarise a DMC Sample with Multiple Participant at the Hyper-level
summed_log_likelihood Sum and Log Probability Density of a EAM model
summed_log_likelihood_parallel Sum and Log Probability Density of a EAM model
summed_log_prior Sum and Log Prior Density of a EAM model
theta.as.mcmc.list Convert Theta to a mcmc List
transform Transform Parameter Data Frame
transform.norm Transform Parameter Data Frame
transform.rd Transform Parameter Data Frame
view Inspect Prior Distribution Settings