Tools for Healthcare Machine Learning


[Up] [Top]

Documentation for package ‘healthcareai’ version 2.0.0

Help Pages

healthcareai-package Machine Learning Made Easy
add_SAM_utility_cols Add SAM utility columns to table
as.model_list Make models into model_list object
build_connection_string Build a connection string for use with MSSQL and dbConnect
catalyst_test_deploy_in_prod Test function to check that the production environment is active.
control_chart Create a control chart
convert_date_cols Convert character date columns to dates
countMissingData Function to find proportion of NAs in each column of a dataframe or matrix
db_read Read from a SQL Server database table
evaluate Get model performance metrics
evaluate.model_list Get model performance metrics
evaluate.predicted_df Get model performance metrics
evaluate_classification Get performance metrics for classification predictions
evaluate_regression Get performance metrics for regression predictions
flash_models Train models without tuning for performance
get_hyperparameter_defaults Get hyperparameter values
get_random_hyperparameters Get hyperparameter values
get_supported_models Supported models and their hyperparameters
get_variable_importance Get variable importances
hcai_impute Specify imputation methods for an existing recipe
healthcareai Machine Learning Made Easy
hyperparameters Get hyperparameter values
impute Impute data and return a reusable recipe
is.classification_list Type checks
is.model_list Type checks
is.predicted_df Class check
is.regression_list Type checks
load_models Save models to disk and load models from disk
machine_learn Machine learning made easy
missingness Find missingness in each column and search for strings that might represent missing values
models Supported models and their hyperparameters
models_supported Supported models and their hyperparameters
pima_diabetes Patient diabetes dataset
pivot Pivot multiple rows per observation to one row with multiple columns
plot.missingness Plot missingness
plot.model_list Plot performance of models
plot.predicted_df Plot model predictions vs observed outcomes
plot.variable_importance Plot variable importance
plot_classification_predictions Plot model predictions vs observed outcomes
plot_regression_predictions Plot model predictions vs observed outcomes
predict.model_list Make predictions using the best-performing model
prep_data Prepare data for machine learning
save_models Save models to disk and load models from disk
selectData Defunct. See 'db_read'
separate_drgs Convert MSDRGs into a "base DRG" and complication level
split_train_test Split data into training and test data frames
start_prod_logs Sets console logging to a file in the working directory.
step_add_levels Add levels to nominal variables
step_date_hcai Date Feature Generator
step_missing Clean NA values from categorical/nominal variables
stop_prod_logs Stops all console logging.
supported_models Supported models and their hyperparameters
tidy.step_add_levels Add levels to nominal variables
tidy.step_date_hcai Date Feature Generator
tune_models Tune multiple machine learning models using cross validation to optimize performance
writeData Defunct. See this vignette for help writing to databases.