Data Manipulation with Parallelism and Shared Memory Matrices


[Up] [Top]

Documentation for package ‘multiplyr’ version 0.1.1

Help Pages

multiplyr-package Data Manipulation with Parellelism and Shared Memory Matrices
add_rownames Add a new column with row names
arrange Sort data
arrange_ Sort data
as.data.frame-method Data access methods for Multiplyr
between Tests whether elements of a vector lie between two values (inclusively)
cumall Cumulative all
cumany Cumulative any
cummean Cumulative mean
define Define new columns
define_ Define new columns
desc Arrange specified column in descending order
dimnames-method Data access methods for Multiplyr
distinct Select unique rows or unique combinations of variables
distinct_ Select unique rows or unique combinations of variables
distribute Calculations for how to distribute x items over N nodes
filter Filter data
filter_ Filter data
first Returns first value in vector
groupwise Return to grouped data
group_by Group data
group_by_ Group data
group_sizes Return size of groups
lag Offset x backwards by n
last Returns last value in vector
lead Offset x forwards by n
Multiplyr Parallel processing data frame
multiplyr Data Manipulation with Parellelism and Shared Memory Matrices
Multiplyr-class Parallel processing data frame
Multiplyr-methods Data access methods for Multiplyr
mutate Change values of existing variables (and create new ones)
mutate_ Change values of existing variables (and create new ones)
n Number of items in current group
names-method Data access methods for Multiplyr
nsa No strings attached mode
nth Return the nth item from a vector
n_distinct Return the number of unique values
n_groups Return number of groups
partition_even Partition data evenly amongst cluster nodes
partition_group Partition data so that each group is wholly on a node
partition_group_ Partition data so that each group is wholly on a node
reduce Summarise data (with local reduction)
reduce_ Summarise data (with local reduction)
regroup Return to grouped data
rename Rename variables
rename_ Rename variables
row.names-method Data access methods for Multiplyr
rowwise Return data to non-grouped
select Retain only specified variables
select_ Retain only specified variables
shutdown Shutdown running cluster
slice Select rows by position
summarise Summarise data
summarise_ Summarise data
transmute Change variables and drop all others
transmute_ Change variables and drop all others
undefine Delete variables
undefine_ Delete variables
ungroup Return data to non-grouped
unselect Delete variables
unselect_ Delete variables
within_group Execute code within a group
within_node Execute code within a node
[-method Data access methods for Multiplyr
[<--method Data access methods for Multiplyr