Flexible R-Vines Estimation Using Bivariate Penalized Splines


[Up] [Top]

Documentation for package ‘penRvine’ version 0.2

Help Pages

penRvine-package Flexible R-vines Estimation Using Bivariate Penalized Splines
add.VineMatrix Notation of the R-vine Matrix
bernstein Flexible Pair-Copula Estimation in D-vines with Penalized Splines
bernstein2 Flexible Pair-Copula Estimation in D-vines with Penalized Splines
cal.vine Flexible Pair-Copula Estimation in R-vines with Penalized Splines
cond.cop Flexible Pair-Copula Estimation in R-vines with Penalized Splines
Derv1 Calculating the first derivative of the paircopula likelihood function w.r.t. parameter b
Derv2 Calculating the second order derivative of the paircopula likelihood function w.r.t. parameter b
f.hat.val Calculating the actual fitted values 'f.hat.val' of the estimated density function
independ.test Testing for independence between two margins of pair-copulas
lam.search Search optimal starting vlaue for lambda
marg.likelihood Calculating the marginal likelihood
my.IC Calculating the AIC-, cAIC- and BIC-value
my.loop Iterative loop for calculating the optimal coefficients 'v'.
new.weights Calculating new weights v.
order.vine Ordering the first level of the R-vine.
order.vine.level Ordering the first level of the R-vine.
paircopula Flexible Pair-Copula Estimation in R-vines using Bivariate Penalized Splines
pen.log.like Calculating the log likelihood
pen.matrix Calculating the penalty matrix P
plot.paircopula Flexible Pair-Copula Estimation in D-vines with Penalized Splines
RVineMatrix Notation of the R-vine Matrix
vine Flexible Pair-Copula Estimation in vines with Penalized Splines