Last updated on 2020-02-19 10:48:46 CET.
| Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags | 
|---|---|---|---|---|---|---|
| r-devel-linux-x86_64-debian-clang | 2.0.0 | 2.82 | 29.73 | 32.55 | ERROR | |
| r-devel-linux-x86_64-debian-gcc | 2.0.0 | 3.08 | 23.30 | 26.38 | ERROR | |
| r-devel-linux-x86_64-fedora-clang | 2.0.0 | 40.28 | ERROR | |||
| r-devel-linux-x86_64-fedora-gcc | 2.0.0 | 39.20 | ERROR | |||
| r-devel-windows-ix86+x86_64 | 2.0.0 | 13.00 | 54.00 | 67.00 | OK | |
| r-devel-windows-ix86+x86_64-gcc8 | 2.0.0 | 20.00 | 73.00 | 93.00 | OK | |
| r-patched-linux-x86_64 | 2.0.0 | 2.70 | 38.54 | 41.24 | OK | |
| r-patched-solaris-x86 | 2.0.0 | 75.00 | OK | |||
| r-release-linux-x86_64 | 2.0.0 | 3.00 | 39.71 | 42.71 | OK | |
| r-release-windows-ix86+x86_64 | 2.0.0 | 10.00 | 54.00 | 64.00 | OK | |
| r-release-osx-x86_64 | 2.0.0 | OK | ||||
| r-oldrel-windows-ix86+x86_64 | 2.0.0 | 6.00 | 50.00 | 56.00 | OK | |
| r-oldrel-osx-x86_64 | 2.0.0 | OK | 
Version: 2.0.0
Check: examples
Result: ERROR
    Running examples in 'AssayCorrector-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: correct_bias
    > ### Title: Correct the bias present in the assay, previously detected by
    > ###   the 'detect_bias()' method
    > ### Aliases: correct_bias
    > 
    > ### ** Examples
    > 
    > assay<-create_assay(m)
    > detected<-detect_bias(assay)
     ----------- FAILURE REPORT -------------- 
     --- failure: the condition has length > 1 ---
     --- srcref --- 
    : 
     --- package (from environment) --- 
    AssayCorrector
     --- call from context --- 
    detect_bias(assay)
     --- call from argument --- 
    if (class(m.E[[ac(model)]][, , k]) == "try-error") stop("PMP encountered a problem")
     --- R stacktrace ---
    where 1: detect_bias(assay)
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context --- 
    function (assay, alpha = 0.01, type = "P", test = "AD") 
    {
        if (class(assay) != "assay") 
            stop("Error: This is not an assay.")
        ac = as.character
        m = assay$m
        ctrl = assay$ctrl
        biasType = assay$biasType
        biasModel = assay$biasModel
        biasConf = assay$biasConf
        PMPmapping = c(1, 4, 5, 3, 2, 6)
        m.E <- new.env()
        for (model in 1:6) {
            m.E[[ac(model)]] = ctrl
        }
        dimensions = dim(m)
        Depth = dimensions[3]
        .test.f = NULL
        if (test == "KS") 
            .test.f = function(x, y) ks.test(x, y)$p.value
        else if (test == "AD") 
            .test.f = function(x, y) as.numeric(tail(strsplit(capture.output(kSamples::ad.test(x, 
                y))[17], " ")[[1]], 1))
        else if (test == "CVM") 
            .test.f = function(x, y) RVAideMemoire::CvM.test(x, y)$p.value
        else {
            stop("Error: This is not a valid test. Please use KS, AD or CVM")
        }
        if (type == "AP") 
            m = .assay(m, ctrl, alpha)
        for (k in 1:Depth) {
            for (model in 1:6) {
                m.E[[ac(model)]][, , k] = try(.PMP(m[, , k], ctrl[, 
                    , k], PMPmapping[model], alpha))
                if (class(m.E[[ac(model)]][, , k]) == "try-error") 
                    stop("PMP encountered a problem")
            }
            mww = (m.E[[ac(1)]][, , k] != m[, , k]) * 1
            assay$biasPositions[, , k] = mww
            biased.E = new.env()
            unbiased = list()
            for (i in 1:dimensions[1]) {
                for (j in 1:dimensions[2]) {
                    if (mww[i, j] & !ctrl[i, j, k]) {
                      for (model in 1:6) {
                        biased.E[[ac(model)]] = c(biased.E[[ac(model)]], 
                          m.E[[ac(model)]][i, j, k])
                      }
                    }
                    else if (!mww[i, j] & !ctrl[i, j, k]) 
                      unbiased = c(unbiased, m.E[[ac(model)]][i, 
                        j, k])
                }
            }
            for (model in 1:6) {
                biased.E[[ac(model)]] = unlist(biased.E[[ac(model)]])
            }
            unbiased = unlist(unbiased)
            if (Reduce(function(x, y) length(biased.E[[ac(y)]]) * 
                x, 1:6, 1) == 0) {
                biasType[k] = "C"
                next
            }
            pvalue.E = new.env()
            for (model in 1:6) {
                pvalue.E[[ac(model)]] = .test.f(biased.E[[ac(model)]], 
                    unbiased)
            }
            aMethods = 1:3
            mMethods = 4:6
            p = function(model) pvalue.E[[ac(model)]]
            if (all(sapply(aMethods, p) < alpha) & any(sapply(mMethods, 
                p) > alpha)) {
                biasType[k] = "M"
                biasModel[k] = 3 + which.max(sapply(mMethods, p))
                biasConf[k] = sum(sapply(mMethods, p) > alpha)
            }
            else if (all(sapply(mMethods, p) < alpha) & any(sapply(aMethods, 
                p) > alpha)) {
                biasType[k] = "A"
                biasModel[k] = which.max(sapply(aMethods, p))
                biasConf[k] = sum(sapply(aMethods, p) > alpha)
            }
            else if (all(sapply(mMethods, p) < alpha) & all(sapply(aMethods, 
                p) < alpha)) {
                biasType[k] = "U"
            }
            else if (all(sapply(mMethods, p) > alpha) & all(sapply(aMethods, 
                p) > alpha)) {
                biasModel[k] = which.max(sapply(c(aMethods, mMethods), 
                    p))
                biasConf[k] = sum(sapply(c(aMethods, mMethods), p) > 
                    alpha)
                biasType[k] = ifelse(biasModel[k] %in% aMethods, 
                    "A", "M")
            }
            else {
                biasType[k] = "U"
            }
        }
        assay$biasType = biasType
        assay$biasModel = biasModel
        assay$biasConf = biasConf
        return(assay)
    }
    <bytecode: 0x2689180>
    <environment: namespace:AssayCorrector>
     --- function search by body ---
    Function detect_bias in namespace AssayCorrector has this body.
     ----------- END OF FAILURE REPORT -------------- 
    Error in if (class(m.E[[ac(model)]][, , k]) == "try-error") stop("PMP encountered a problem") : 
      the condition has length > 1
    Calls: detect_bias
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 2.0.0
Check: examples
Result: ERROR
    Running examples in ‘AssayCorrector-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: correct_bias
    > ### Title: Correct the bias present in the assay, previously detected by
    > ###   the 'detect_bias()' method
    > ### Aliases: correct_bias
    > 
    > ### ** Examples
    > 
    > assay<-create_assay(m)
    > detected<-detect_bias(assay)
     ----------- FAILURE REPORT -------------- 
     --- failure: the condition has length > 1 ---
     --- srcref --- 
    : 
     --- package (from environment) --- 
    AssayCorrector
     --- call from context --- 
    detect_bias(assay)
     --- call from argument --- 
    if (class(m.E[[ac(model)]][, , k]) == "try-error") stop("PMP encountered a problem")
     --- R stacktrace ---
    where 1: detect_bias(assay)
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context --- 
    function (assay, alpha = 0.01, type = "P", test = "AD") 
    {
        if (class(assay) != "assay") 
            stop("Error: This is not an assay.")
        ac = as.character
        m = assay$m
        ctrl = assay$ctrl
        biasType = assay$biasType
        biasModel = assay$biasModel
        biasConf = assay$biasConf
        PMPmapping = c(1, 4, 5, 3, 2, 6)
        m.E <- new.env()
        for (model in 1:6) {
            m.E[[ac(model)]] = ctrl
        }
        dimensions = dim(m)
        Depth = dimensions[3]
        .test.f = NULL
        if (test == "KS") 
            .test.f = function(x, y) ks.test(x, y)$p.value
        else if (test == "AD") 
            .test.f = function(x, y) as.numeric(tail(strsplit(capture.output(kSamples::ad.test(x, 
                y))[17], " ")[[1]], 1))
        else if (test == "CVM") 
            .test.f = function(x, y) RVAideMemoire::CvM.test(x, y)$p.value
        else {
            stop("Error: This is not a valid test. Please use KS, AD or CVM")
        }
        if (type == "AP") 
            m = .assay(m, ctrl, alpha)
        for (k in 1:Depth) {
            for (model in 1:6) {
                m.E[[ac(model)]][, , k] = try(.PMP(m[, , k], ctrl[, 
                    , k], PMPmapping[model], alpha))
                if (class(m.E[[ac(model)]][, , k]) == "try-error") 
                    stop("PMP encountered a problem")
            }
            mww = (m.E[[ac(1)]][, , k] != m[, , k]) * 1
            assay$biasPositions[, , k] = mww
            biased.E = new.env()
            unbiased = list()
            for (i in 1:dimensions[1]) {
                for (j in 1:dimensions[2]) {
                    if (mww[i, j] & !ctrl[i, j, k]) {
                      for (model in 1:6) {
                        biased.E[[ac(model)]] = c(biased.E[[ac(model)]], 
                          m.E[[ac(model)]][i, j, k])
                      }
                    }
                    else if (!mww[i, j] & !ctrl[i, j, k]) 
                      unbiased = c(unbiased, m.E[[ac(model)]][i, 
                        j, k])
                }
            }
            for (model in 1:6) {
                biased.E[[ac(model)]] = unlist(biased.E[[ac(model)]])
            }
            unbiased = unlist(unbiased)
            if (Reduce(function(x, y) length(biased.E[[ac(y)]]) * 
                x, 1:6, 1) == 0) {
                biasType[k] = "C"
                next
            }
            pvalue.E = new.env()
            for (model in 1:6) {
                pvalue.E[[ac(model)]] = .test.f(biased.E[[ac(model)]], 
                    unbiased)
            }
            aMethods = 1:3
            mMethods = 4:6
            p = function(model) pvalue.E[[ac(model)]]
            if (all(sapply(aMethods, p) < alpha) & any(sapply(mMethods, 
                p) > alpha)) {
                biasType[k] = "M"
                biasModel[k] = 3 + which.max(sapply(mMethods, p))
                biasConf[k] = sum(sapply(mMethods, p) > alpha)
            }
            else if (all(sapply(mMethods, p) < alpha) & any(sapply(aMethods, 
                p) > alpha)) {
                biasType[k] = "A"
                biasModel[k] = which.max(sapply(aMethods, p))
                biasConf[k] = sum(sapply(aMethods, p) > alpha)
            }
            else if (all(sapply(mMethods, p) < alpha) & all(sapply(aMethods, 
                p) < alpha)) {
                biasType[k] = "U"
            }
            else if (all(sapply(mMethods, p) > alpha) & all(sapply(aMethods, 
                p) > alpha)) {
                biasModel[k] = which.max(sapply(c(aMethods, mMethods), 
                    p))
                biasConf[k] = sum(sapply(c(aMethods, mMethods), p) > 
                    alpha)
                biasType[k] = ifelse(biasModel[k] %in% aMethods, 
                    "A", "M")
            }
            else {
                biasType[k] = "U"
            }
        }
        assay$biasType = biasType
        assay$biasModel = biasModel
        assay$biasConf = biasConf
        return(assay)
    }
    <bytecode: 0x55d0f5716480>
    <environment: namespace:AssayCorrector>
     --- function search by body ---
    Function detect_bias in namespace AssayCorrector has this body.
     ----------- END OF FAILURE REPORT -------------- 
    Error in if (class(m.E[[ac(model)]][, , k]) == "try-error") stop("PMP encountered a problem") : 
      the condition has length > 1
    Calls: detect_bias
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 2.0.0
Check: examples
Result: ERROR
    Running examples in ‘AssayCorrector-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: correct_bias
    > ### Title: Correct the bias present in the assay, previously detected by
    > ###   the 'detect_bias()' method
    > ### Aliases: correct_bias
    > 
    > ### ** Examples
    > 
    > assay<-create_assay(m)
    > detected<-detect_bias(assay)
     ----------- FAILURE REPORT -------------- 
     --- failure: the condition has length > 1 ---
     --- srcref --- 
    : 
     --- package (from environment) --- 
    AssayCorrector
     --- call from context --- 
    detect_bias(assay)
     --- call from argument --- 
    if (class(m.E[[ac(model)]][, , k]) == "try-error") stop("PMP encountered a problem")
     --- R stacktrace ---
    where 1: detect_bias(assay)
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context --- 
    function (assay, alpha = 0.01, type = "P", test = "AD") 
    {
        if (class(assay) != "assay") 
            stop("Error: This is not an assay.")
        ac = as.character
        m = assay$m
        ctrl = assay$ctrl
        biasType = assay$biasType
        biasModel = assay$biasModel
        biasConf = assay$biasConf
        PMPmapping = c(1, 4, 5, 3, 2, 6)
        m.E <- new.env()
        for (model in 1:6) {
            m.E[[ac(model)]] = ctrl
        }
        dimensions = dim(m)
        Depth = dimensions[3]
        .test.f = NULL
        if (test == "KS") 
            .test.f = function(x, y) ks.test(x, y)$p.value
        else if (test == "AD") 
            .test.f = function(x, y) as.numeric(tail(strsplit(capture.output(kSamples::ad.test(x, 
                y))[17], " ")[[1]], 1))
        else if (test == "CVM") 
            .test.f = function(x, y) RVAideMemoire::CvM.test(x, y)$p.value
        else {
            stop("Error: This is not a valid test. Please use KS, AD or CVM")
        }
        if (type == "AP") 
            m = .assay(m, ctrl, alpha)
        for (k in 1:Depth) {
            for (model in 1:6) {
                m.E[[ac(model)]][, , k] = try(.PMP(m[, , k], ctrl[, 
                    , k], PMPmapping[model], alpha))
                if (class(m.E[[ac(model)]][, , k]) == "try-error") 
                    stop("PMP encountered a problem")
            }
            mww = (m.E[[ac(1)]][, , k] != m[, , k]) * 1
            assay$biasPositions[, , k] = mww
            biased.E = new.env()
            unbiased = list()
            for (i in 1:dimensions[1]) {
                for (j in 1:dimensions[2]) {
                    if (mww[i, j] & !ctrl[i, j, k]) {
                      for (model in 1:6) {
                        biased.E[[ac(model)]] = c(biased.E[[ac(model)]], 
                          m.E[[ac(model)]][i, j, k])
                      }
                    }
                    else if (!mww[i, j] & !ctrl[i, j, k]) 
                      unbiased = c(unbiased, m.E[[ac(model)]][i, 
                        j, k])
                }
            }
            for (model in 1:6) {
                biased.E[[ac(model)]] = unlist(biased.E[[ac(model)]])
            }
            unbiased = unlist(unbiased)
            if (Reduce(function(x, y) length(biased.E[[ac(y)]]) * 
                x, 1:6, 1) == 0) {
                biasType[k] = "C"
                next
            }
            pvalue.E = new.env()
            for (model in 1:6) {
                pvalue.E[[ac(model)]] = .test.f(biased.E[[ac(model)]], 
                    unbiased)
            }
            aMethods = 1:3
            mMethods = 4:6
            p = function(model) pvalue.E[[ac(model)]]
            if (all(sapply(aMethods, p) < alpha) & any(sapply(mMethods, 
                p) > alpha)) {
                biasType[k] = "M"
                biasModel[k] = 3 + which.max(sapply(mMethods, p))
                biasConf[k] = sum(sapply(mMethods, p) > alpha)
            }
            else if (all(sapply(mMethods, p) < alpha) & any(sapply(aMethods, 
                p) > alpha)) {
                biasType[k] = "A"
                biasModel[k] = which.max(sapply(aMethods, p))
                biasConf[k] = sum(sapply(aMethods, p) > alpha)
            }
            else if (all(sapply(mMethods, p) < alpha) & all(sapply(aMethods, 
                p) < alpha)) {
                biasType[k] = "U"
            }
            else if (all(sapply(mMethods, p) > alpha) & all(sapply(aMethods, 
                p) > alpha)) {
                biasModel[k] = which.max(sapply(c(aMethods, mMethods), 
                    p))
                biasConf[k] = sum(sapply(c(aMethods, mMethods), p) > 
                    alpha)
                biasType[k] = ifelse(biasModel[k] %in% aMethods, 
                    "A", "M")
            }
            else {
                biasType[k] = "U"
            }
        }
        assay$biasType = biasType
        assay$biasModel = biasModel
        assay$biasConf = biasConf
        return(assay)
    }
    <bytecode: 0x3149910>
    <environment: namespace:AssayCorrector>
     --- function search by body ---
    Function detect_bias in namespace AssayCorrector has this body.
     ----------- END OF FAILURE REPORT -------------- 
    Error in if (class(m.E[[ac(model)]][, , k]) == "try-error") stop("PMP encountered a problem") : 
      the condition has length > 1
    Calls: detect_bias
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 2.0.0
Check: examples
Result: ERROR
    Running examples in ‘AssayCorrector-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: correct_bias
    > ### Title: Correct the bias present in the assay, previously detected by
    > ###   the 'detect_bias()' method
    > ### Aliases: correct_bias
    > 
    > ### ** Examples
    > 
    > assay<-create_assay(m)
    > detected<-detect_bias(assay)
     ----------- FAILURE REPORT -------------- 
     --- failure: the condition has length > 1 ---
     --- srcref --- 
    : 
     --- package (from environment) --- 
    AssayCorrector
     --- call from context --- 
    detect_bias(assay)
     --- call from argument --- 
    if (class(m.E[[ac(model)]][, , k]) == "try-error") stop("PMP encountered a problem")
     --- R stacktrace ---
    where 1: detect_bias(assay)
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context --- 
    function (assay, alpha = 0.01, type = "P", test = "AD") 
    {
        if (class(assay) != "assay") 
            stop("Error: This is not an assay.")
        ac = as.character
        m = assay$m
        ctrl = assay$ctrl
        biasType = assay$biasType
        biasModel = assay$biasModel
        biasConf = assay$biasConf
        PMPmapping = c(1, 4, 5, 3, 2, 6)
        m.E <- new.env()
        for (model in 1:6) {
            m.E[[ac(model)]] = ctrl
        }
        dimensions = dim(m)
        Depth = dimensions[3]
        .test.f = NULL
        if (test == "KS") 
            .test.f = function(x, y) ks.test(x, y)$p.value
        else if (test == "AD") 
            .test.f = function(x, y) as.numeric(tail(strsplit(capture.output(kSamples::ad.test(x, 
                y))[17], " ")[[1]], 1))
        else if (test == "CVM") 
            .test.f = function(x, y) RVAideMemoire::CvM.test(x, y)$p.value
        else {
            stop("Error: This is not a valid test. Please use KS, AD or CVM")
        }
        if (type == "AP") 
            m = .assay(m, ctrl, alpha)
        for (k in 1:Depth) {
            for (model in 1:6) {
                m.E[[ac(model)]][, , k] = try(.PMP(m[, , k], ctrl[, 
                    , k], PMPmapping[model], alpha))
                if (class(m.E[[ac(model)]][, , k]) == "try-error") 
                    stop("PMP encountered a problem")
            }
            mww = (m.E[[ac(1)]][, , k] != m[, , k]) * 1
            assay$biasPositions[, , k] = mww
            biased.E = new.env()
            unbiased = list()
            for (i in 1:dimensions[1]) {
                for (j in 1:dimensions[2]) {
                    if (mww[i, j] & !ctrl[i, j, k]) {
                      for (model in 1:6) {
                        biased.E[[ac(model)]] = c(biased.E[[ac(model)]], 
                          m.E[[ac(model)]][i, j, k])
                      }
                    }
                    else if (!mww[i, j] & !ctrl[i, j, k]) 
                      unbiased = c(unbiased, m.E[[ac(model)]][i, 
                        j, k])
                }
            }
            for (model in 1:6) {
                biased.E[[ac(model)]] = unlist(biased.E[[ac(model)]])
            }
            unbiased = unlist(unbiased)
            if (Reduce(function(x, y) length(biased.E[[ac(y)]]) * 
                x, 1:6, 1) == 0) {
                biasType[k] = "C"
                next
            }
            pvalue.E = new.env()
            for (model in 1:6) {
                pvalue.E[[ac(model)]] = .test.f(biased.E[[ac(model)]], 
                    unbiased)
            }
            aMethods = 1:3
            mMethods = 4:6
            p = function(model) pvalue.E[[ac(model)]]
            if (all(sapply(aMethods, p) < alpha) & any(sapply(mMethods, 
                p) > alpha)) {
                biasType[k] = "M"
                biasModel[k] = 3 + which.max(sapply(mMethods, p))
                biasConf[k] = sum(sapply(mMethods, p) > alpha)
            }
            else if (all(sapply(mMethods, p) < alpha) & any(sapply(aMethods, 
                p) > alpha)) {
                biasType[k] = "A"
                biasModel[k] = which.max(sapply(aMethods, p))
                biasConf[k] = sum(sapply(aMethods, p) > alpha)
            }
            else if (all(sapply(mMethods, p) < alpha) & all(sapply(aMethods, 
                p) < alpha)) {
                biasType[k] = "U"
            }
            else if (all(sapply(mMethods, p) > alpha) & all(sapply(aMethods, 
                p) > alpha)) {
                biasModel[k] = which.max(sapply(c(aMethods, mMethods), 
                    p))
                biasConf[k] = sum(sapply(c(aMethods, mMethods), p) > 
                    alpha)
                biasType[k] = ifelse(biasModel[k] %in% aMethods, 
                    "A", "M")
            }
            else {
                biasType[k] = "U"
            }
        }
        assay$biasType = biasType
        assay$biasModel = biasModel
        assay$biasConf = biasConf
        return(assay)
    }
    <bytecode: 0x2a902c0>
    <environment: namespace:AssayCorrector>
     --- function search by body ---
    Function detect_bias in namespace AssayCorrector has this body.
     ----------- END OF FAILURE REPORT -------------- 
    Error in if (class(m.E[[ac(model)]][, , k]) == "try-error") stop("PMP encountered a problem") : 
      the condition has length > 1
    Calls: detect_bias
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc