
Package ‘haplo.stats’

July 13, 2004

Version 1.1.1

Date 2004-04

Title Statistical Analysis of Haplotypes with Traits and Covariates when Linkage Phase is
Ambiguous.

Author Jason P. Sinnwell and Daniel J. Schaid

Maintainer Jason P. Sinnwell <sinnwell@mayo.edu>

Description Haplo Stats is a suite of S-PLUS/R routines for the analysis of indirectly
measured haplotypes. The statistical methods assume that all subjects are unrelated
and that haplotypes are ambiguous (due to unknown linkage phase of the genetic
markers). The genetic markers are assumed to be codominant (i.e., one-to-one
correspondence between their genotypes and their phenotypes), and so we refer to the
measurements of genetic markers as genotypes. The main functions in Haplo Stats are:
haplo.em, haplo.glm and haplo.score.

License Copyright 2003 Mayo Foundation for Medical Education and Research. This
program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This program is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA. For other licensing arrangements, please contact Daniel J.
Schaid, Ph.D., Division of Biostatistics, Harwick Building Room 775, Mayo Clinic, 200
First St., SW, Rochester, MN 55905. Phone: 507-284-0639, fax: 507-284-9542 email:
schaid@mayo.edu

Depends R (>= 1.7.1)

Suggests Design, Hmisc

URL http://www.mayo.edu/hsr/people/schaid.html

1

2 R topics documented:

R topics documented:

Ginv . 3
allele.recode . 4
dglm.fit . 5
geno.count.pairs . 5
geno.recode . 6
glm.fit.nowarn . 7
haplo.em . 9
haplo.em.control . 11
haplo.em.fitter . 13
haplo.enum . 14
haplo.glm . 15
haplo.glm.control . 20
haplo.group . 21
haplo.hash . 22
haplo.model.frame . 23
haplo.score . 24
haplo.score.glm . 27
haplo.score.merge . 28
haplo.score.podds . 29
haplo.score.slide . 31
hla.demo . 33
locator.haplo . 34
loci . 35
locus . 37
louis.info . 38
mf.gindx . 39
na.geno.keep . 40
plot.haplo.score . 40
plot.haplo.score.slide . 42
print.haplo.em . 43
print.haplo.glm . 44
print.haplo.group . 45
print.haplo.score . 46
print.haplo.score.merge . 47
print.haplo.score.slide . 48
printBanner . 49
residScaledGlmFit . 50
score.sim.control . 50
setupData . 52
setupGeno . 53
summary.haplo.em . 54
summaryGeno . 55
varfunc.glm.fit . 56

Index 57

Ginv 3

Ginv Compute Generalized Inverse of Input Matrix

Description

Singular value decomposition (svd) is used to compute a generalized inverse of input matrix.

Usage

Ginv(x)

Arguments

x A matrix.

Details

The function svd is used to compute the singular values of the input matrix, and the rank
of the matrix is determined by the number of singular values that are at least as large as
max(svd)*eps, where eps is a small value (currently eps = .000001).

Value

List with components:

Ginv Generalized inverse of x.

rank Rank of matrix x.

Side Effects

References

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. The art of
scientific computing. 2nd ed. Cambridge University Press, Cambridge.1992. page 61.

See Also

svd

Examples

for matrix x, extract the generalized inverse and

rank of x as follows

> save <- Ginv(x)

> ginv.x <- save$Ginv

> rank.x <- save$rank

4 allele.recode

allele.recode Recode allele values to integer ranks

Description

Genotypes for subjects represented by a pair of vectors, with the vectors containing allele
values (either numeric, factor, or character), are recoded to the rank order of allele values.

Usage

allele.recode(a1, a2, miss.val=NA)

Arguments

a1 Vector of ”first” alleles.

a2 Vector of ”second” alleles.

miss.val Vector of missing value codes for alleles.

Details

If alleles are numeric, they are recoded to the rank order of the alleles. If the alleles are
factor or character, they are recoded to interger values that correspond to the indices of the
sorted values of the unique alleles, but sorted as character values.

Value

List with components:

a1 Vector of recoded ”first” alleles.

a2 Recode of recoded ”second” alleles.

allele.label Vector of labels for unique alleles.

Side Effects

References

See Also

geno.recode

Examples

dglm.fit 5

dglm.fit Density function for GLM fit

Description

For internal use within the haplo.stats library

Usage

dglm.fit(fit)

Arguments

fit

Details

For internal use within the haplo.stats library

Value

Side Effects

References

See Also

Examples

geno.count.pairs Counts of Total Haplotype Pairs Produced by Genotypes

Description

Provide a count of all possible haplotype pairs for each subject, according to the phenotypes
in the rows of the geno matrix. The count for each row includes the count for complete
phenotypes, as well as possible haplotype pairs for phenotypes where there are missing
alleles at any of the loci.

Usage

geno.count.pairs(geno)

6 geno.recode

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns
of alleles, and the order of columns corresponds to the order of loci on
a chromosome. If there are K loci, then geno has 2*K columns. Rows
represent all observed alleles for each subject, their phenotype.

Details

When a subject has no missing alleles, and has h heterozygous sites, there are 2**(h-1)
haplotype pairs that are possible (’**’=power). For loci with missing alleles, we consider
all possible pairs of alleles at those loci. Suppose that there are M loci with missing alleles,
and let the vector V have values 1 or 0 acccording to whether these loci are imputed to
be heterozygous or homozygous, respectively. The length of V is M. The total number of
possible states of V is 2**M. Suppose that the vector W, also of length M, provides a count
of the number of possible heterozygous/homozygous states at the loci with missing data.
For example, if one allele is missing, and there are K possible alleles at that locus, then
there can be one homozygous and (K-1) heterozygous genotypes. If two alleles are missing,
there can be K homozygous and K(K-1)/2 heterozygous genotypes. Suppose the function
H(h+V) counts the total number of heterozygous sites among the loci without missing data
(of which h are heterozygous) and the imputed loci (represented by the vector V). Then,
the total number of possible pairs of haplotypes can be respresented as SUM(W*H(h+V)),
where the sum is over all possible values for the vector V.

Value

Vector where each element gives a count of the number haplotype pairs that are consistent
with a subject’s phenotype, where a phenotype may include 0, 1, or 2 missing alleles at any
locus.

Side Effects

See Also

haplo.em, summaryGeno

Examples

setupData(hla.demo)

geno <- hla.demo[,c(17,18,21:24)]

geno <- geno.recode(geno)$grec

count.geno <- geno.count.pairs(geno)

print(count.geno)

geno.recode Recode Genotypes

Description

For all loci as pairs of columns in a matrix, recode alleles

glm.fit.nowarn 7

Usage

geno.recode(geno, miss.val=0)

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns of
alleles. If there are K loci, then ncol(geno) = 2*K. Rows represent alleles
for each subject.

miss.val Vector of codes for missing values of alleles.

Details

Value

List with components:

grec Matrix of recoded alleles - see allele.recode

alist List of allele labels. For K loci, there are K components in the list, and
the kth component is a vector of sorted unique allele labels for the kth
locus.

Side Effects

References

See Also

allele.recode

Examples

glm.fit.nowarn Modified from glm.fit function to not warn users for binomial
non-integer weights.

Description

An internal function for the haplo.stats library

Usage

glm.fit.nowarn(x, y, weights = rep(1, nobs), start = NULL,
etastart = NULL, mustart = NULL, offset = rep(0,nobs),
family=gaussian(), control=glm.control(), intercept=TRUE)

8 glm.fit.nowarn

Arguments

x x

y y

weights weights

start start

etastart etastart

mustart mustart

offset offset

family family

control control

intercept intercept

Details

Value

Note

Author(s)

Sinnwell JP

References

See Also

haplo.glm

Examples

haplo.em 9

haplo.em EM Computation of Haplotype Probabilities, with Progressive In-
sertion of Loci

Description

For genetic marker phenotypes measured on unrelated subjects, with linkage phase un-
known, compute maximum likelihood estimates of haplotype probabilities. Because linkage
phase is unknown, there may be more than one pair of haplotypes that are consistent with
the oberved marker phenotypes, so posterior probabilities of pairs of haplotypes for each
subject are also computed. Unlike the usual EM which attempts to enumerate all possible
pairs of haplotypes before iterating over the EM steps, this ”progressive insertion”algorithm
progressively inserts batches of loci into haplotypes of growing lengths, runs the EM steps,
trims off pairs of haplotypes per subject when the posterior probability of the pair is below
a specified threshold, and then continues these insertion, EM, and trimming steps until all
loci are inserted into the haplotype. The user can choose the batch size. If the batch size is
chosen to be all loci, and the threshold for trimming is set to 0, then this algorithm reduces
to the usual EM algorithm.

Usage

haplo.em(geno, locus.label=NA, miss.val=c(0, NA), weight, control=
haplo.em.control())

Arguments

geno matrix of alleles, such that each locus has a pair of adjacent columns of
alleles, and the order of columns corresponds to the order of loci on a
chromosome. If there are K loci, then ncol(geno) = 2*K. Rows represent
the alleles for each subject.

locus.label vector of labels for loci.

miss.val vector of values that represent missing alleles in geno.

weight weights for observations (rows of geno matrix).

control list of control parameters. The default is constructed by the function
haplo.em.control. The default behavior of this function results in the fol-
lowing parameter settings: loci.insert.order=1:n.loci, insert.batch.size=min(4,n.loci),
min.posterior= 0.0001, tol=0.00001, max.iter=500, random.start=0 (no
random start), iseed=NULL (no saved seed to start random start), ver-
bose=0 (no printout during EM iterations). See haplo.em.control for more
details.

Details

Value

list with components:

converge indicator of convergence of the EM algorithm (1 = converge, 0 = failed).

10 haplo.em

lnlike value of lnlike at last EM iteration (maximum lnlike if converged).

lr likelihood ratio statistic to test the final lnlike against the lnlike that
assumes complete linkage equilibrium among all loci (i.e., haplotype fre-
quencies are products of allele frequencies).

df.lr degrees of freedom for likelihood ratio statistic. The df for the uncon-
strained final model is the number of non-zero haplotype frequencies mi-
nus 1, and the df for the null model of complete linkage equilibrium is
the sum, over all loci, of (number of alleles - 1). The df for the lr statis-
tic is df[unconstrained] - df[null]. This can result in negative df, if many
haplotypes are estimated to have zero frequency, or if a large amount of
trimming occurs, when using large values of min.posterior in the list of
control parameters.

hap.prob vector of mle’s of haplotype probabilities. The ith element of hap.prob
corresponds to the ith row of haplotype.

locus.label vector of labels for loci, of length K (see definition of input values).

subj.id vector of id’s for subjects used in the analysis, based on row number of
input geno matrix. If subjects are removed, then their id will be missing
from subj.id.

rows.rem now defunct, but set equal to a vector of length 0, to be compatible with
other functions that check for rows.rem.

indx.subj vector for row index of subjects after expanding to all possible pairs of
haplotypes for each person. If indx.subj=i, then i is the ith row of geno.
If the ith subject has n possible pairs of haplotypes that correspond to
their marker genotype, then i is repeated n times.

nreps vector for the count of haplotype pairs that map to each subject’s marker
genotypes.

max.pairs vector of maximum number of pairs of haplotypes per subject that are
consistent with their marker data in the matrix geno. The length of
max.pairs = nrow(geno). This vector is computed by geno.count.pairs.

hap1code vector of codes for each subject’s first haplotype. The values in hap1code
are the row numbers of the unique haplotypes in the returned matrix
haplotype.

hap2code similar to hap1code, but for each subject’s second haplotype.

post vector of posterior probabilities of pairs of haplotypes for a person, given
their marker phenotypes.

haplotype matrix of unique haplotypes. Each row represents a unique haplotype,
and the number of columns is the number of loci.

control list of control parameters for algorithm. See haplo.em.control

Side Effects

References

The basis of this progressive insertion algorithm is from the sofware snphap by David
Clayton. Although some of the features and control parameters of this S-PLUS version are
modeled after snphap, there are substantial differences, such as extension to allow for more
than two alleles per locus, and some other nuances on how the alogrithm is implemented.

haplo.em.control 11

See Also

haplo.em.control

Examples

setupData(hla.demo)

attach(hla.demo)

geno <- hla.demo[,c(17,18,21:24)]

label <-c("DQB","DRB","B")

keep <- !apply(is.na(geno) | geno==0, 1, any)

save.em.keep <- haplo.em(geno=geno[keep,], locus.label=label)

warning: output will not exactly match

print.haplo.em(save.em.keep)

haplo.em.control Create the Control Parameters for the EM Computation of Hap-
lotype Probabilities, with Progressive Insertion of Loci

Description

This function creates a list of parameters that control the EM algorithm based on progressive
insertion of loci. Non-default parameters for the EM algorithm can be set as parameters
passed to haplo.em.control.

Usage

haplo.em.control(loci.insert.order=NULL, insert.batch.size = 6,
min.posterior = 1e-07, tol = 1e-05,
max.iter=500, random.start=0, n.try = 10,
iseed=NULL, max.haps.limit = 2e6, verbose=0)

Arguments

loci.insert.order

Numeric vector with specific order to insert the loci. If this value is NULL,
the insert oder will be in sequential order (1, 2, ..., No. Loci).

insert.batch.size

Number of loci to be inserted in a single batch.
min.posterior

Minimum posterior probability of haplotype pair, conditional on observed
marker genotypes. Posteriors below this minimum value will have their
pair of haplotypes ”trimmed” off the list of possible pairs.

tol Default 1e-5

max.iter Maximum number of iterations allowed for the EM algorithm before it
stops and prints an error. Default is 500.

12 haplo.em.control

random.start If random.start = 0, then the inititial starting values of the posteriors for
the first EM attempt will be based on assuming equal posterior proba-
bilities (conditional on genotypes). If random.start = 1, then the initial
starting values of the first EM attempt will be based on assuming a uni-
form distribution for the initial posterior probabilities.

n.try Number of times to try to maximize the lnlike by the EM algorithm. The
first try will use, as initial starting values for the posteriors, either equal
values or uniform random variables, as determined by random.start. All
subsequent tries will use uniform random values as initial starting values
for the posterior probabilities.

iseed An integer or a saved copy of .Random.seed. This allows simulations to
be reproduced by using the same initial seed.

max.haps.limit

The maximum number of haplotypes for which memory is allocated.

verbose Logical, if [T]rue, print lots of debug messages to the screen. If [F]alse,
default, do not print any messages. It is best to use verbose=F.

Details

The default is to use n.try = 10. If this takes too much time, it may be worthwhile to
decrease n.try. Other tips for computing haplotype frequencies for a large number of loci,
particularly if some have many alleles, is to decrease the batch size (insert.batch.size),
increase the memory (max.haps.limit).

Value

A list of the parameters passed to the function.

Side Effects

References

See Also

haplo.em, haplo.score

Examples

This is how it is used within haplo.score

> score.gauss <- haplo.score(resp, geno, trait.type="gaussian",

> em.control=haplo.em.control(insert.batch.size = 2, n.try=1))

haplo.em.fitter 13

haplo.em.fitter Compute engine for haplotype EM algorithm

Description

For internal use within the haplo.stats library

Usage

haplo.em.fitter(n.loci, n.subject, weight, geno.vec, n.alleles,
max.haps, max.iter, loci.insert.order, min.posterior,
tol, insert.batch.size, random.start, iseed1, iseed2,
iseed3, verbose)

Arguments

n.loci

n.subject

weight

geno.vec

n.alleles

max.haps

max.iter
loci.insert.order

min.posterior

tol
insert.batch.size

random.start

iseed1

iseed2

iseed3

verbose

Details

For internal use within the haplo.stats library

Value

Side Effects

14 haplo.enum

References

See Also

Examples

haplo.enum Enumerate all possible pairs of haplotypes that are consistent with
a set of un-phased multilocus markers

Description

Given subject un-phased genotype hmat, enumerate all possible pairs of haplotypes, and
return enumerated pairs in matrices h1 and h2.

Usage

haplo.enum(hmat)

Arguments

hmat A genotype vector of length 2*K (K = number of loci). When used in
haplo.em, it is a single row of a genotype matrix.

Details

For a pair of haplotypes, if there are H sites that are heterozygous, then there are 2 raised
to (H-1) possible pairs to enumerate. To achieve this, the algorithm moves across the loci
that are heterozygous (after the 1st heterozygous locus), flipping alleles at heterozygous
locations to enumerate all possible pairs of haplotpes, and appending results as rows of the
output matrices h1, and h2.

Value

List with components:

h1 A matrix of enumerated haplotypes. If there are N enumerations, h1 will
have dimension N x K.

h2 Similar to h1, a matrix of enumerated haplotypes for the second members
of the pairs of haplotypes. Haplotype pairs in h1 and h2 match by the
same row number.

Side Effects

haplo.glm 15

References

See Also

haplo.em

Examples

haplo.glm GLM Regression of Trait on Ambiguous Haplotypes

Description

Perform glm regression of a trait on haplotype effects, allowing for ambiguous haplotypes.
This method performs an iterative two-step EM, with the posterior probabilities of pairs
of haplotypes per subject used as weights to update the regression coefficients, and the
regression coefficients used to update the posterior probabilities.

Usage

haplo.glm(formula=formula(data), family=gaussian, data=sys.parent(),
weights, na.action="na.geno.keep", start=eta, miss.val=c(0,NA),
locus.label=NA, allele.lev=NULL, control=haplo.glm.control(),
method="glm.fit", model=FALSE, x=FALSE, y=TRUE,
contrasts=NULL, ...)

Arguments

formula a formula expression as for other regression models, of the form response
predictors. For details, see the documentation for lm and formula.

family a family object. This is a list of expressions for defining the link, variance
function, initialization values, and iterative weights for the generalized
linear model. Supported families are: gaussian, binomial, poisson. Cur-
rently, only the logit link is implemented for binimial.

data a data frame in which to interpret the variables occurring in the formula.
A CRITICAL element of the data frame is the matrix of genotypes, de-
noted here as ”geno”, although an informative name should be used in
practice. This geno matrix is actually a matrix of alleles, such that each
locus has a pair of adjacent columns of alleles, and the order of columns
corresponds to the order of loci on a chromosome. If there are K loci,
then ncol(geno) = 2*K. Rows represent the alleles for each subject. It
is also CRITICAL that this matrix is defined as a model.matrix, in or-
der to keep the columns of the matrix packaged together into the single
matrix object. If geno is a matrix of alleles, then before adding it to the
data frame, use the following command to convert it to a model.matrix:
oldClass(geno) <- ”model.matrix”. If geno is a data.frame of alleles, you
must first convert geno to a matrix, using geno <- as.matrix(geno), and
then convert it to a model.matrix.

16 haplo.glm

weights the weights for observations (rows of the data frame). By default, all
observations are weighted equally.

na.action a function to filter missing data. This is applied to the model.frame.
The default value of na.action=na.geno.keep will keep observations with
missing alleles, but exclude observations missing any other data (e.g.,
response variable, other covariates, weight). The EM algorithm for am-
biguous haplotypes accounts for missing alleles. Similar to the usual glm,
na.fail creates an error if any missing values are found, and a third possi-
ble alternative is na.exclude, which deletes observations that contain one
or more missing values for any data, including alleles.

start a vector of initial values on the scale of the linear predictor.

miss.val vector of values that represent missing alleles in geno matrix.

locus.label vector of labels for loci.

allele.lev This argument is optional ONLY for S-PLUS, but is REQUIRED for R.
This is a list of vectors, each vector giving the labels of alleles for each
locus. The list is made an attribute of geno<-setupGeno(geno). This is
required to account for the differences in which S-PLUS and R handle
character data (allele labels) in a model.frame. See its use in the example
below.

control list of control parameters. The default is constructed by the function
haplo.glm.control. The items in this list control the regression modeling
of the haplotypes (e.g., additive, dominant, recessive effects of haplotypes;
which haplotype is chosen as the baseline for regression; how to handle
rare haplotypes; control of the glm function - maximum number of itera-
tions), and the EM algorithm for estimating initial haplotype frequencies.
See haplo.glm.control for details.

method currently, glm.fit is the only method allowed.

model if model=TRUE, the model.frame is returned.

x a logical flag. If x=TRUE, the model.matrix is returned. By default,
x=FALSE.

y a logical flag. The default value of y=TRUE causes the response variable
to be returned.

contrasts currently, contrasts is ignnored (so NULL, the default value, is always
used).

... potential other arguments that may be passed - currently ignored.

Details

Value

An object of class ”haplo.glm” is returned. The output object from haplo.glm has all
the components of a glm object, with a few more. It is important to note that some of
the returned components correpond to the ”expanded” version of the data. This means
that each observation is expanded into the number of terms in the observation’s posterior
distribution of haplotype pairs, given the marker data. For example, when fitting the
response y on haplotype effects, the value of y[i], for the ith observation, is replicated m[i]
times, where m[i] is the number of pairs of haplotypes consistent with the observed marker

haplo.glm 17

data. The returned components that are expanded are indicated below by [expanded] in
the definition of the component. These expanded components may need to be collapsed,
depending on the user’s objectives. For example, when considering the influence of an
observation, it may make sense to examine the expanded residuals for a single observation,
perhaps plotted against the haplotypes for that observation. In contrast, it would not
be sensible to plot all residuals against non-genetic covaraites, without first collapsing the
expanded residuals for each observation. To collapse, one can use the average residual per
observation, weighted according to the posterior probabilities. The appropriate weight can
be computed as wt = fit$weight.expanded * fit$haplo.post.info$post. Then, the weighted
average can be calculated as tapply(fit$residuals * wt, fit$haplo.post.info$indx, sum).

coefficients the coefficients of the linear.predictors, which multiply the columns of
the model matrix. The names of the coefficients are the names of the
columns of the model matrix. For haplotype coefficients, the names are
the concatentation of name of the geno matrix with a haplotype num-
ber. The haplotype number corresponds to the index of the haplotype.
The default print will show the coefficients with haplotype number, along
with the alleles that define the haplotype, and the estimated haplotype
frequency. If the model is over-determined there will be missing values in
the coefficients corresponding to inestimable coefficients.

residuals [expanded] residuals from the final weighted least squares fit; also known
as working residuals, these are typically not interpretable without rescal-
ing by the weights (see glm.object).

fitted.values [expanded] fitted mean values, obtained by transforming linear.predictors
using the inverse link function (see glm.object).

effects [expaded] orthogonal, single-degree-of-freedom effects (see lm.object).

R the triangular factor of the decomposition (see lm.object).

rank the computed rank (number of linearly independent columns in the model
matrix), which is the model degrees of freedom - see lm.object.

assign the list of assignments of coefficients (and effects) to the terms in the
model (see lm.object).

df.residual [expanded] number of degrees of freedom for residuals, corresponding to
the expanded data.

weights.expanded

[expanded] input weights after expanding according to the number of pairs
of haplotypes consistent with an observation’s marker genotype data.

family a 3 element character vector giving the name of the family, the link and
the variance function; mainly for printing purposes.

linear.predictors

[expanded] linear fit, given by the product of the model matrix and the
coefficients; also the fitted.values from the final weighted least squares fit.

deviance [expanded] up to a constant, minus twice the maximized log-likelihood.
Similar to the residual sum of squares.

null.deviance the deviance corresponding to the model with no predictors.

call an image of the call that produced the object, but with the arguments all
named and with the actual formula included as the formula argument.

iter the number of IRLS iterations used to compute the estimates, for the last
step of the EM fit of coefficients.

y [expanded] response, if y=T.

18 haplo.glm

contrasts a list containing sufficient information to construct the contrasts used to
fit any factors occurring in the model (see lm.object).

lnlike log-likelihood of the fitted model.

lnlike.null log-likelihood of the null model that has only an intercept.

lrt likelihood ratio test statistic to test whether all coefficients (excepet in-
tercept) are zero: 2*(lnlike - lnlike.null)

terms an object of mode expression and class term summarizing the formula,
but not complete for the final model. Because this does not represent
expansion of the design matrix for the haplotypes, it is typically not of
direct relevance to users.

control list of all control parameters

haplo.unique the data.frame of unique haplotypes

haplo.base the index of the haplotype used as the base-line for the regression model.
To see the actual haplotype definition, use the following: fit$haplo.unique[fit$haplo.base,],
where fit is the saved haplo.glm object (e.g., fit <- haplo.glm(y geno,
...)).

haplo.freq the final estimates of haplotype frequencies, after completing EM steps
of updating haplotype frequencies and regression coefficients. The length
of haplo.freq is the number of rows of haplo.unique, and the order of
haplo.freq is the same as that for the rows of haplo.unique. So, the fre-
quencies of the unique haplotypes can be viewed as cbind(fit$haplo.unique,
fit$haplo.freq).

haplo.freq.init

the initial estimates of haplotype frequencies, based on the EM algorithm
for estimating haplotype frequencies, ingnoring the trait. These can be
compared with haplo.freq, to see the impact of using the regression model
to update the haplotype frequencies.

converge.em T/F whether the initial EM algorithm for estimating haplo.freq.init con-
verged.

haplo.common the indices of the haplotypes determined to be ”common” enough to esti-
mate their corresponding regression coefficients.

haplo.rare the indices of all the haplotypes determined to be too rare to estimate
their specific regression coefficients.

haplo.rare.term

T/F whether the ”rare”term is included in the haplotype regression model.

haplo.names the names of the coefficients that represent haplotype effects.
haplo.post.info

a data.frame of information regarding the posterior probabilites. The
columns of this data.frame are: indx (the index of the input obsevation;
if the ith observation is repeated m times, then indx will show m repli-
cates of i; hence, indx will correspond to the ”expanded” observations);
hap1 and hap2 (the indices of the haplotypes; if hap1=j and hap2=k,
then the two haplotypes in terms of alleles are fit$haplo.unique[j,] and
fit$haplo.unique[k,]); post.init (the initial posterior probability, based on
haplo.freq.init); post (the final posterior probability, based on haplo.freq).

x the model matrix, with [expanded] rows, if x=T.

haplo.glm 19

info the observed information matrix, based on Louis’ formula. The upper left
submatrix is for the regression coefficient, the lower right submatrix for
the haplotype frequencies, and the remaining is the information between
regression coefficients and haplotype frequencies.

var.mat the variance-covariance matrix of regression coefficients and haplotype
frequencies, based on the inverse of info. Upper left submatrix is for
regression coefficients, lower right submatrix for haplotype frequencies.

haplo.elim the indices of the haplotypes eliminated from the info and var.mat matri-
ces because their frequencies are less than haplo.min.info (the minimum
haplotype frequency required for computation of the information matrix
- see haplo.glm.control)

rank.info rank of information (info) matrix.

References

Lake S, Lyon H, Silverman E, Weiss S, Laird N, Schaid D (2002) Estimation and tests
of haplotype-environment interaction when linkage phase is ambiguous. Human Heredity
55:56-65.

See Also

haplo.glm.control, haplo.em, haplo.model.frame

Examples

setupData(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)])

keep <- !apply(is.na(geno) | geno==0, 1, any)

hla.demo <- hla.demo[keep,]

geno <- geno[keep,]

attach(hla.demo)

label <-c("DQB","DRB","B")

y <- hla.demo$resp

y.bin <- 1*(hla.demo$resp.cat=="low")

set up a genotype array as a model.matrix for inserting into data frame

Note that hla.demo is a data.frame, and we need to subset to columns

of interest. Also also need to convert to a matrix object, so that

setupGeno can code alleles and convert geno to 'model.matrix' class.

geno <- setupGeno(geno, miss.val=c(0,NA))

geno now has an attribute 'unique.alleles' which must be passed to

haplo.glm as allele.lev=attributes(geno)$unique.alleles, see below

my.data <- data.frame(geno=geno, age=hla.demo$age, male=hla.demo$male,

y=y, y.bin=y.bin)

fit.gaus <- haplo.glm(y ~ male + geno, family = gaussian, na.action=

"na.geno.keep",allele.lev=attributes(geno)$unique.alleles,

data=my.data, locus.label=label,

control = haplo.glm.control(haplo.freq.min=0.02))

fit.gaus

20 haplo.glm.control

haplo.glm.control Create list of control parameters for haplo.glm

Description

Create a list of control pararameters for haplo.glm. If no parameters are passed to this
function, then all default values are used.

Usage

haplo.glm.control(haplo.effect="add", haplo.base=NULL,haplo.freq.min=0.001,
sum.rare.min=0.001, haplo.min.info=0.001,
keep.rare.haplo=TRUE, glm.c=glm.control(maxit=500),

em.c=haplo.em.control())

Arguments

haplo.effect the ”effect” of a haplotypes, which determines the covariate (x) coding of
haplotypes. Valid options are ”additive” (causing x = 0, 1, or 2, the count
of a particular haplotype), ”dominant” (causing x = 1 if heterozygous
or homozygous carrier of a particular haplotype; x = 0 otherwise), and
”recessive” (causing x = 1 if homozygous for a particular haplotype; x =
0 otherwise).

haplo.base the index for the haplotype to be used as the base-line for regression. By
default, haplo.base=NULL, so that the most frequent haplotype is chosen
as the base-line.

haplo.freq.min

the minimum haplotype frequency for a haplotype to be included in the
regression model as its own effect. The haplotype frequency is based on
the EM algorithm that estimates haplotype frequencies independent of
trait.

sum.rare.min the sum of the ”rare”haplotype frequencies must be larger than sum.rare.min
in order for the pool of rare haplotypes to be included in the regression
model as a separate term. If this condition is not met, then the rare
haplotypes are pooled with the base-line haplotype (see keep.rare.haplo
below).

haplo.min.info

the minimum haplotype frequency for determining the contribution of a
haplotype to the observed information matrix. Haplotypes with less fre-
quency are dropped from the observed information matrix. The haplotype
frequency is that from the final EM that iteratively updates haplotype fre-
quencies and regression coefficients.

keep.rare.haplo

TRUE/FALSE to determine if the pool of rare haplotype should be kept as
a separate term in the regression model (when keep.rare.haplo=TRUE),
or pooled with the base-line haplotype (when keep.rare.haplo=FALSE).

glm.c list of control parameters for the usual glm.control (see glm.control).

em.c list of control parameters for the EM algorithm to estimate haplotype
frequencies, independent of trait (see haplo.em.control).

haplo.group 21

Value

the list of above components

See Also

glm.control, haplo.em.control

Examples

using the data set up in the example for haplo.glm,

the control function is used in haplo.glm as follows

> fit <- haplo.glm(y ~ male + geno, family = gaussian,

> na.action="na.geno.keep",

> data=my.data, locus.label=locus.label,

> control = haplo.glm.control(haplo.freq.min =

> 0.02,em.c=haplo.em.control(n.try=1)))

haplo.group Frequencies for Haplotypes by Grouping Variable

Description

Calculate maximum likelihood estimates of haplotype probabilities for the entire dataset
and separately for each subset defined by the levels of a group variable. Only autosomal
loci are considered.

Usage

haplo.group(group, geno, locus.label=NA, miss.val=0,
control=haplo.em.control())

Arguments

group Group can be of logical, numeric, character, or factor class type.

geno Matrix of alleles, such that each locus has a pair of adjacent columns
of alleles, and the order of columns corresponds to the order of loci on
a chromosome. If there are K loci, then geno has 2*K columns. Rows
represent all observed alleles for each subject.

locus.label Vector of labels for loci, of length K (see definition of geno matrix).

miss.val Vector of codes for allele missing values.

control list of control parameters for haplo.em (see haplo.em.control).

Details

Haplo.em is used to compute the maximum likelihood estimates of the haplotype frequencies
for the total sample, then for each of the groups separately.

22 haplo.hash

Value

A list as an object of the haplo.group class. The three elements of the list
are described below.

group.df A data frame with the columns described as follows. -haplotype: Names
for the K columns for the K alleles in the haplotypes. -total: Estimated
frequencies for haplotypes from the total sample. -group.name.i: Esti-
mated haplotype frequencies for the haplotype if it occurs in the group
referenced by ’i’. Frequency is NA if it doesn’t occur for the group. The
column name is the actual variable name joined with the ith level of that
variable.

group.count Vector containing the number of subjects for each level of the grouping
variable.

n.loci Number of loci occuring in the geno matrix.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. ”Score tests for association
of traits with haplotypes when linkage phase is ambiguous.”Amer J Hum Genet. 70 (2002):
425-434.

See Also

print.haplo.group, haplo.em

Examples

setupData(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)])

remove any subjects with missing alleles for faster examples,

but you may keep them in practice

keep <- !apply(is.na(geno) | geno==0, 1, any)

hla.demo <- hla.demo[keep,]

geno <- geno[keep,]

attach(hla.demo)

y.ord <- as.numeric(resp.cat)

y.bin <-ifelse(y.ord==1,1,0)

group.bin <- haplo.group(y.bin, geno, miss.val=0)

print.haplo.group(group.bin)

haplo.hash Integer Rank Codes for Haplotypes

Description

Create a vector of integer codes for the input matrix of haplotypes. The haplotypes in
the input matrix are converted to character strings, and if there are C unique strings, the
integer codes for the haplotypes will be 1, 2, ..., C.

haplo.model.frame 23

Usage

haplo.hash(hap)

Arguments

hap A matrix of haplotypes. If there are N haplotypes for K loci, hap have
dimensions N x K.

Details

The alleles that make up each row in hap are pasted together as character strings, and the
unique strings are sorted so that the rank order of the sorted strings is used as the integer
code for the unique haplotypes.

Value

List with elements:

hash Vector of integer codes for the input data (hap). The value of hash is
the row number of the unique haplotypes given in the returned matrix
hap.mtx.

hap.mtx Matrix of unique haplotypes.

Side Effects

References

See Also

haplo.em

Examples

haplo.model.frame Sets up a model frame for haplo.glm

Description

For internal use within the haplo.stats library

Usage

haplo.model.frame(m, locus.label=NA, allele.lev=NULL, miss.val=c(0,NA),
control=haplo.glm.control())

24 haplo.score

Arguments

m

locus.label

allele.lev

miss.val

control

Details

Value

Side Effects

References

See Also

Examples

haplo.score Score Statistics for Association of Traits with Haplotypes

Description

Compute score statistics to evaluate the association of a trait with haplotypes, when linkage
phase is unknown and diploid marker phenotypes are observed among unrelated subjects.
For now, only autosomal loci are considered.

Usage

haplo.score(y, geno, trait.type="gaussian", offset = NA,
x.adj = NA, skip.haplo=.005, locus.label=NA,
miss.val=c(0,NA), simulate=FALSE, sim.control=score.sim.control(),
em.control=haplo.em.control())

haplo.score 25

Arguments

y Vector of trait values. For trait.type = ”binomial”, y must have values of
1 for event, 0 for no event.

geno Matrix of alleles, such that each locus has a pair of adjacent columns of
alleles, and the order of columns corresponds to the order of loci on a
chromosome. If there are K loci, then ncol(geno) = 2*K. Rows represent
alleles for each subject.

trait.type Character string defining type of trait, with values of ”gaussian”, ”bino-
mial”, ”poisson”, ”ordinal”.

offset Vector of offset when trait.type = ”poisson”

x.adj Matrix of non-genetic covariates used to adjust the score statistics. Note
that intercept should not be included, as it will be added in this function.

skip.haplo Skip score statistics for haplotypes with frequencies < skip.haplo

locus.label Vector of labels for loci, of length K (see definition of geno matrix)

miss.val Vector of codes for missing values of alleles

simulate Logical: if [F]alse, no empirical p-values are computed; if [T]rue, simula-
tions are performed. Specific simulation parameters can be controlled in
the sim.control parameter list.

sim.control A list of control parameters to determine how simulations are performed
for simulated p-values. The list is created by the function score.sim.control
and the default values of this function can be changed as desired. See
score.sim.control for details.

em.control A list of control parameters to determine how to perform the EM algo-
rithm for estimating haplotype frequencies when phase is unknown. The
list is created by the function haplo.em.control - see this function for more
details.

Details

Compute the maximum likelihood estimates of the haplotype frequencies and the posterior
probabilities of the pairs of haplotypes for each subject using an EM algorithm. The
algorithm begins with haplotypes from a subset of the loci and progressively discards those
with low frequency before inserting more loci. The process is repeated until haplotypes for
all loci are established. The posterior probabilities are used to compute the score statistics
for the association of (ambiguous) haplotypes with traits. The glm function is used to
compute residuals of the regression of the trait on the non-genetic covariates.

Value

List with the following components:

score.global Global statistic to test association of trait with haplotypes that have fre-
quencies >= skip.haplo.

df Degrees of freedom for score.global.
score.global.p

P-value of score.global based on chi-square distribution, with degrees of
freedom equal to df.

score.global.p.sim

P-value of score.global based on simulations (set equal to NA when sim-
ulate=F).

26 haplo.score

score.haplo Vector of score statistics for individual haplotypes that have frequencies
>= skip.haplo.

score.haplo.p Vector of p-values for score.haplo, based on a chi-square distribution with
1 df.

score.haplo.p.sim

Vector of p-values for score.haplo, based on simulations (set equal to NA
when simulate=F).

score.max.p.sim

P-value of maximum score.haplo, based on simulations (set equal to NA
when simulate=F).

haplotype Matrix of hapoltypes analyzed. The ith row of haplotype corresponds to
the ith item of score.haplo, score.haplo.p, and score.haplo.p.sim.

hap.prob Vector of haplotype probabilies, corresponding to the haplotypes in the
matrix haplotype.

locus.label Vector of labels for loci, of length K (same as input argument).

simulate Same as function input parameter. If [T]rue, simulation results are in-
cluded in the haplo.score object.

n.val.global Vector containing the number of valid simulations used in the global score
statistic simulation. The number of valid simulations can be less than the
number of simulations requested (by sim.control) if simulated data sets
produce unstable variances of the score statistics.

n.val.haplo Vector containing the number of valid simulations used in the p-value sim-
ulations for maximum-score statistic and scores for the individual haplo-
types.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. ”Score tests for association
of traits with haplotypes when linkage phase is ambiguous.”Amer J Hum Genet. 70 (2002):
425-434.

See Also

haplo.em, plot.haplo.score, print.haplo.score, haplo.em.control, score.sim.control

Examples

establish all hla.demo data, remove genotypes with missing alleles

so haplo.score runs faster

setupData(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)])

keep <- !apply(is.na(geno) | geno==0, 1, any)

hla.demo <- hla.demo[keep,]

geno <- geno[keep,]

attach(hla.demo)

label <- c("DQB","DRB","B")

haplo.score.glm 27

For quantitative, normally distributed trait:

score.gaus <- haplo.score(resp, geno, locus.label=label,

trait.type = "gaussian")

print(score.gaus)

For ordinal trait:

y.ord <- as.numeric(resp.cat)

score.ord <- haplo.score(y.ord, geno, locus.label=label,

trait.type="ordinal")

print(score.ord)

For a binary trait and simulations,

limit simulations to 500 in score.sim.control, default is 20000

y.bin <-ifelse(y.ord==1,1,0)

score.bin.sim <- haplo.score(y.bin, geno, trait.type = "binomial",

locus.label=label, simulate=TRUE, sim.control=

score.sim.control(min.sim=200,max.sim=500))

print(score.bin.sim)

For a binary trait, adjusted for sex and age:

x <- cbind(male, age)

score.bin.adj <- haplo.score(y.bin, geno, trait.type = "binomial",

locus.label=label, x.adj=x)

print(score.bin.adj)

haplo.score.glm Compute haplotype score statistics for GLM

Description

This function is used by haplo.score when analyzing traits by a GLM score.

Usage

haplo.score.glm(y, mu, a, v, x.adj, nreps, x.post, post, x)

Arguments

y Vector of trait values.

mu Expected value of y.

a scale parameter

v v= b”/a for a GLM.

x.adj Matrix of non-genetic covariates used to adjust the score statistics. Note
that intercept should be included in this matrix.

nreps Vector for the count of haplotype pairs that map to each subject’s marker
genotypes (see haplo.em).

x.post Matrix for posterior mean of x per subject.

post Vector of posterior probabilities of pairs of haplotypes for a person, given
thier marker phenotypes (see haplo.em).

28 haplo.score.merge

x Matrix of scores for enumerated haplotypes for each subject, with ele-
ments 0, 1, 2 (counts of specific haplotypes).

None.

Details

Using posterior probabilities of pairs of haplotypes, the ”design” matrix for the haplotype
effects, and the GLM residuals, compute the score vector and its variance matrix, adjusted
for the non-genetic covariates.

Value

List with components:

u.score Vector of scores for the chosen haplotypes

v.score Covariance matrix for u.score

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association
of traits with haplotypes when linkage phase is ambiguous. Submitted to Amer J Hum
Genet.

See Also

haplo.score

Examples

haplo.score.merge Merge haplo.score And haplo.group Objects

Description

Combine information from returned objects of haplo.score and haplo.group, ’score’ and
’group’ respectively. ’score’ and ’group’ are sorted differently and ’score’ keeps a subset of
all the haplotypes while ’group’ has all of them. To combine results from the two objects,
merge them by haplotype and sort by score of the haplotype. The merged object includes
all haplotypes; i.e. those appearing in ’group’, but the print default only shows haplotypes
which have a score.

Usage

haplo.score.merge(score, group)

haplo.score.podds 29

Arguments

score Object returned from haplo.score of class ”haplo.score”.

group Object returned from haplo.group of class ”haplo.group”.

Details

Haplo.score returns score statistic and p-value for haplotypes with an overall frequency
above the user-specified threshold, skip.haplo. For haplotypes with frequencies below the
threshold, the score and p-value will be NA. Overall haplotype frequencies and for sub-
groups are estimated by haplo.group.

Value

Data frame including haplotypes, score-statistics, score p-value, estimated haplotype fre-
quency for all subjects, and haplotype frequency from group subsets.

Side Effects

Warning: The merge will not detect if the group and score objects resulted from differ-
ent subject phenotypes selected by memory-usage parameters, rm.geno.na and enum.limit.
Users must use the same values for these parameters in haplo.score and haplo.group so the
merged objects are consistent.

See Also

haplo.score, haplo.group

Examples

setupData(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)])

keep <- !apply(is.na(geno) | geno==0, 1, any)

hla.demo <- hla.demo[keep,]

geno <- geno[keep,]

attach(hla.demo)

y.ord <- as.numeric(resp.cat)

y.bin <-ifelse(y.ord==1,1,0)

group.bin <- haplo.group(y.bin, geno, miss.val=0)

score.bin <- haplo.score(y.bin, geno, trait.type="binomial")

score.merged <- haplo.score.merge(score.bin, group.bin)

print(score.merged)

haplo.score.podds Compute Haplotype Score Statistics for Ordinal Traits with Pro-
portional Odds Model

Description

This function is used by haplo.score when analyzing ordinal traits by a proportional odds
model score statistic.

30 haplo.score.podds

Usage

haplo.score.podds(y, alpha, beta=NA, x.adj=NA, nreps, x.post, post, x)

Arguments

y Vector of ordinal trait values.

alpha Intercept parameters for ordinal logistic regression model.

beta Regression parameters for adjusted covariates (x.adj).

x.adj Matrix of non-genetic covariates used to adjust the score statistics. Note
that intercept should NOT be included in this matrix.

nreps Vector for the count of haplotype pairs that map to each subject’s marker
genotypes (see haplo.em).

x.post Matrix for posterior mean of x per subject.

post Vector of posterior probabilities of pairs of haplotypes for a person, given
thier marker phenotypes (see haplo.em).

x Matrix of scores for enumerated haplotypes for each subject, with ele-
ments 0, 1, 2 (counts of specific haplotypes).

None.

Details

Using posterior probabilities of pairs of haplotypes, the ”design” matrix for the haplotype
effects, and the proportional odds model, compute the score vector and its variance matrix,
adjusted for the non-genetic covariates.

Value

List with components:

u.score Vector of scores for the chosen haplotypes

v.score Covariance matrix for u.score

Side Effects

Warning

To analyze an ordinal trait with adjustment for x.adj covariates, the user will need to have
Frank Harrell’s librarys (Design and Hmisc). However, the unadjusted ordinal trait works
fine without these libraries.

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association
of traits with haplotypes when linkage phase is ambiguous. Submitted to Amer J Hum
Genet.

See Also

haplo.score

haplo.score.slide 31

Examples

haplo.score.slide Score Statistics for Association of Traits with Haplotypes

Description

Used to identify sub-haplotypes from a group of loci. Run haplo.score on all contigu-
ous subsets of size n.slide from the loci in a genotype matrix (geno). From each call to
haplo.score, report the global score statistic p-value. Can also report global and maximum
score statistics simulated p-values.

Usage

haplo.score.slide(y, geno, trait.type="gaussian", n.slide=2,
offset = NA, x.adj = NA, skip.haplo=.005,
locus.label=NA, miss.val=c(0,NA),
simulate=FALSE, sim.control=score.sim.control(),
em.control=haplo.em.control())

Arguments

y Vector of trait values. For trait.type = ”binomial”, y must have values of
1 for event, 0 for no event.

geno Matrix of alleles, such that each locus has a pair of adjacent columns of
alleles, and the order of columns corresponds to the order of loci on a
chromosome. If there are K loci, then ncol(geno) = 2*K. Rows represent
alleles for each subject.

trait.type Character string defining type of trait, with values of ”gaussian”, ”bino-
mial”, ”poisson”, ”ordinal”.

n.slide Number of loci in each contiguous subset. The first subset is the ordered
loci numbered 1 to n.slide, the second subset is 2 through n.slide+1 and
so on. If the total number of loci in geno is n.loci, then there are n.loci -
n.slide + 1 total subsets.

offset Vector of offset when trait.type = ”poisson”

x.adj Matrix of non-genetic covariates used to adjust the score statistics. Note
that intercept should not be included, as it will be added in this function.

skip.haplo Skip score statistics for haplotypes with frequencies < skip.haplo

locus.label Vector of labels for loci, of length K (see definition of geno matrix).

miss.val Vector of codes for missing values of alleles.

simulate Logical, if [F]alse (default) no empirical p-values are computed. If [T]rue
simulations are performed. Specific simulation parameters can be con-
trolled in the sim.control parameter list.

sim.control A list of control parameters used to perform simulations for simulated p-
values in haplo.score. The list is created by the function score.sim.control
and the default values of this function can be changed as desired.

32 haplo.score.slide

em.control A list of control parameters used to perform the em algorithm for esti-
mating haplotype frequencies when phase is unknown. The list is created
by the function haplo.em.control and the default values of this function
can be changed as desired.

Details

Haplo.score.slide is useful for a series of loci where little is known of the association between
a trait and haplotypes. Using a range of n.slide values, the region with the strongest
association will consistently have low p-values for locus subsets containing the associated
haplotypes. The global p-value measures significance of the entire set of haplotypes for
the locus subset. Simulated maximum score statistic p-values indicate when one or a few
haplotypes are associated with the trait.

Value

List with the following components:

df Data frame with start locus, global p-value, simulated global p-value, and
simulated maximum-score p-value.

n.loci Number of loci given in the genotype matrix.

simulate Same as parameter description above.

n.slide Same as parameter description above.

locus.label Same as parameter description above.

n.val.haplo Vector containing the number of valid simulations used in the maximum-
score statistic p-value simulation. The number of valid simulations can be
less than the number of simulations requested (by sim.control) if simulated
data sets produce unstable variables of the score statistics.

n.val.global Vector containing the number of valid simulations used in the global score
statistic p-value simulation.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. ”Score tests for association
of traits with haplotypes when linkage phase is ambiguous.”Amer J Hum Genet. 70 (2002):
425-434.

See Also

haplo.score, plot.haplo.score.slide, score.sim.control

Examples

setupData(hla.demo)

Continuous trait slide by 2 loci on all 11 loci, uncomment to run it.

Takes > 20 minutes to run

geno.11 <- hla.demo[,-c(1:4)]

label.11 <- c("DPB","DPA","DMA","DMB","TAP1","TAP2","DQB","DQA","DRB","B","A")

hla.demo 33

slide.gaus <- haplo.score.slide(resp, geno.11, trait.type = "gaussian",

locus.label=label.11, n.slide=2)

print(slide.gaus)

plot(slide.gaus)

Run shortened example on 9 loci

For an ordinal trait, slide by 3 loci, and simulate p-values:

geno.9 <- hla.demo[,-c(1:6,15,16)]

label.9 <- c("DPA","DMA","DMB","TAP1","DQB","DQA","DRB","B","A")

y.ord <- as.numeric(hla.demo$resp.cat)

data is set up, to run, run these lines of code on the data that was

set up in this example. It takes > 15 minutes to run

slide.ord.sim <- haplo.score.slide(y.ord, geno.9, trait.type = "ordinal",

n.slide=3, locus.label=label.9, simulate=TRUE,

sim.control=score.sim.control(min.sim=200, max.sim=500))

note, results will vary due to simulations

print(slide.ord.sim)

plot(slide.ord.sim)

plot(slide.ord.sim, pval="global.sim")

plot(slide.ord.sim, pval="max.sim")

hla.demo HLA Loci and Serologic Response to Measles Vaccination.

Description

Eleven HLA-region loci genotyped for 220 subjects, phase not known. Contains measles
vaccination response with covariate data.

Usage

data(hla.demo)

Format

Data Frame with the following columns:

resp Quantitative response to Measles Vaccination

resp.cat Category of response as low, normal, or high; based on ’resp’

male Binary indicator of gender, 1=male, 0=female

age Age of the subject

allele columns 5 - 26 Pairs of columns represent the allele pairs for each subject at the locus.

34 locator.haplo

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. ”Score tests for association
of traits with haplotypes when linkage phase is ambiguous.”Amer J Hum Genet. 70 (2002):
425-434.

Source

Data set kindly provided by Gregory A. Poland, M.D. and the Mayo Clinic Vaccine Research
Group for illustration only, and my not be used for publication.

locator.haplo Find Location from Mouse Clicks and Print Haplotypes on Plot

Description

Much like the Splus locator() is used to find x-y coordinates on a plot, locator.haplo() finds
all x-y coordinates that are clicked on by a user, and then prints haplotypes at the chosen
positions.

Usage

locator.haplo(obj)

Arguments

obj An object (of class haplo.score) which contains the analysis results that
are returned from the function haplo.score.

Details

After plotting the results in obj, as from plot(obj), the function locator.haplo is used to
place on the plot the text strings for haplotypes of interest. After the function call (e.g.,
locator.haplo(obj)), the user can click, with the left mouse button, on as many points in
the plot as desired. Then, clicking with the middle mouse button will cause the haplotypes
to be printed on the plot. The format of a haplotype is ”a:b:c”, where a, b, and c are alleles,
and the separator ”:” is used to separate alleles on a haplotype. The algorithm chooses the
closest point that the user clicks on, and prints the haplotype either above the point (for
points on the lower-half of the plot) or below the point (for points in the upper-half of the
plot).

Value

List with the following components:

x.coord Vector of x-coordinates.

y.coord Vector of y-coordinates.

hap.txt Vector of character strings for haplotypes.

See Also

haplo.score

loci 35

Examples

follow the pseudo-code

score.out <- haplo.score(y, geno, trait.type = "gaussian")

plot(score.out)

locator.haplo(score.out)

loci Create a group of locus objects from a genotype matrix, assign to
’model.matrix’ class.

Description

The function makes each pair of columns a locus object, which recodes alleles to numeric
and saves the original alleles as an attribute of the model.matrix.

Usage

loci(geno, locus.names, chrom.label=NULL, x.linked=FALSE, sex=NULL,
male.code="M", female.code="F", miss.val=NA, map=NA)

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns of
alleles, and the order of columns corresponds to the order of loci on a
chromosome. If there are K loci, then ncol(geno) = 2*K. Rows represent
alleles for each subject.

locus.names A vector containing the locus name for each locus.

chrom.label Chromosome Label

x.linked A logical value denoting whether the chromosome is X-linked.

sex A vector containing the sex of each individual. If x.linked=F then argum
ent sex is not required and may be left as the default value of NULL.

male.code The code denoting a male in the sex vector.

female.code The code denoting a female in the sex vector.

miss.val A vector of codes denoting missing values for the allele labels. Note
that NA will always be treated as a missing value, and alleles matching
miss.val are assigned NA. Also note that the original missing value code
for a specific individual can not be retrieved from the returned object.

map An optional chromosome map of class ”cmap”

Details

36 loci

Value

An object of class ”model.matrix”, with all alleles recoded to a numeric value. It contains
the following attributes:

locus.names A vector of labels for the loci, of length nloci.

map Will be better defined later.

x.linked A logical value denoting whether the chromosome is X-linked.
unique.alleles

The original allele labels are stored in the ’unique.alleles’ attribute. The
ith item of the unique.alleles list is a vector of unique alleles for the ith
locus.

male.code The code denoting a male in the sex vector.

female.code The code denoting a female in the sex vector.

chrom.label Chromosome Label

Side Effects

References

Note

A matrix that contains all elements of mode character will be sorted in alphabetic order.

See Also

locus, setupGeno

Examples

Create some loci to work with

a1 <- 1:6

a2 <- 7:12

b1 <- c("A","A","B","C","E","D")

b2 <-c("A","A","C","E","F","G")

c1 <- c("101","10","115","132","21","112")

c2 <- c("100","101","0","100","21","110")

myloci <- data.frame(a1,a2,b1,b2,c1,c2)

myloci <- loci(myloci, locus.names=c("A","B","C"),miss.val=c(0,NA))

myloci

attributes(myloci)

locus 37

locus Creates an object of class ”locus”

Description

Creates an object containing genotypes for multiple individuals. The object can then use
method functions developed for objects of class ”locus”.

Usage

locus(allele1, allele2, chrom.label=NULL,locus.alias=NULL,
x.linked=FALSE, sex=NULL, male.code="M", female.code="F", miss.val=NA)

Arguments

allele1 A vector containing the labels for 1 allele for a set of individuals, or
optionally a matrix with 2 columns each containing an allele for each
person.

allele2 A vector containing the labels for the second allele for a set of individuals.
If allele 1 is a matrix, allele 2 need not be specified.

chrom.label A label describing the chromosome the alleles belong to

locus.alias A vector containing one or more aliases describing the locus. The first
alias in the vector will be used as a label for printing in some functions
such as multilocus.print().

x.linked A logical value denoting whether the chromosome is x linked

sex A vector containing the gender of each individual (required if x.linked=T)

male.code The code denoting a male in the sex vector

female.code The code denoting a female in the sex vector

miss.val a vector of codes denoting missing values for allele1 and allele2. Note
that NA will always be treated as a missing value, even if not specified in
miss.val. Also note that if multiple missing value codes are specified, the
original missing value code for a specific individual can not be retrieved
from the locus object.

Details

Value

Returns an object of class locus which inherits from class model.matrix containing the
following elements:

geno a matrix with 2 columns where each row contains numeric codes for the
2 alleles for an individual.

chrom.label a chromosome label

locus.alias a vector of aliases for the locus

x.linked a logical value specifying if the locus is x-linked or not

38 louis.info

allele.labels a vector of labels corresponding to the numeric codes in matrix geno
(similar to levels in a factor)

male.code a code to be used to identify males for an x.linked locus.

female.code a code to be used to identify females for an x.linked locus.

Side Effects

References

See Also

Examples

b1 <- c("A","A","B","C","E","D")

b2 <- c("A","A","C","E","F","G")

loc1 <- locus(b1,b2,chrom=4,locus.alias="D4S1111")

loc1

a second example which uses more parameters, some may not be supported.

c1 <- c("101","10","115","132","21","112")

c2 <- c("100","101","0","100","21","110")

gender <- rep(c("M","F"),3)

loc2 <- locus(c2,c2,chrom="X",locus.alias="DXS1234",x.linked=T,sex=gender)

louis.info Louis Information for haplo.glm

Description

For internal use within the haplo.stats library

Usage

louis.info(fit)

Arguments

fit

Details

Value

mf.gindx 39

Side Effects

References

See Also

Examples

mf.gindx Model Frame Genotype Index to Account for Missing Data in
haplo.glm

Description

For internal use within the haplo.stats library

Usage

mf.gindx(m)

Arguments

m

Details

Value

Side Effects

References

See Also

Examples

40 plot.haplo.score

na.geno.keep Find non-missing rows in the genotype matrix of the model.frame

Description

An internal function for the haplo.stats package

Usage

na.geno.keep(m)

Arguments

m

Details

Value

Side Effects

References

See Also

Examples

plot.haplo.score Plot Haplotype Frequencies versus Haplotype Score Statistics

Description

Method function to plot a class of type haplo.score

Usage

plot.haplo.score(x, ...)

plot.haplo.score 41

Arguments

x The object returned from haplo.score (which has class haplo.score).

... Dynamic parameter for the values of additional parameters for the plot
method.

Details

This is a plot method function used to plot haplotype frequencies on the x-axis and
haplotype-specific scores on the y-axis. Because haplo.score is a class, the generic plot
function can be used, which in turn calls this plot.haplo.score function.

Value

Nothing is returned.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. ”Score tests for association
of traits with haplotypes when linkage phase is ambiguous.”Amer J Hum Genet. 70 (2002):
425-434.

See Also

haplo.score

Examples

setupData(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)])

keep <- !apply(is.na(geno) | geno==0, 1, any)

hla.demo <- hla.demo[keep,]

geno <- geno[keep,]

attach(hla.demo)

label <- c("DQB","DRB","B")

For quantitative, normally distributed trait:

score.gaus <- haplo.score(resp, geno, locus.label=label,

trait.type = "gaussian")

plot.haplo.score(score.gaus)

42 plot.haplo.score.slide

plot.haplo.score.slide

Plot a haplo.score.slide Object

Description

Method function to plot an object of class haplo.score.slide. The p-values from haplo.score.slide
are for sub-haplotypes of a larger chromosomal region, and these are plotted to visualize the
change in p-values as the sub-haplotype ”slides” over a chromosome. Plot -log10(p-value)
on the y-axis vs. the loci over which it was computed on the x-axis.

Usage

plot.haplo.score.slide(x, pval="global", dist.vec=1:x$n.loci,
cex=.8, srt=270, ...)

Arguments

x The object returned from haplo.score.slide

pval Character string for the choice of p-value to plot. Options are: ”global”
(the global score statistic p-value based on an asymptotic chi-square dis-
tribution), ”global.sim” (the global score statistic simulated p-value), and
”max.sim” (the simulated p-value for the maximum score statistic).

dist.vec Numeric vector for position (i.e. in cM) of the loci along a chromosome.
Distances on x-axis will correspond to these positions.

cex Character expansion size.

srt String rotation in degrees measured counterclockwise from horizontal.
Applies to x-axis (locus) labels.

... Dynamic parameter for the values of additional parameters for the plot
method.

Details

The x-axis has tick marks for all loci. The y-axis is the -log10() of the selected p-value. For
each haplo.score result, plot a horizontal line at the height of -log10(p-value) drawn across
the loci over which it was calculated. Therefore a p-value of 0.001 for the first 3 loci will
plot as a horizontal line plotted at y=3 covering the first three tick marks.

Value

Nothing is returned.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. ”Score tests for association
of traits with haplotypes when linkage phase is ambiguous.”Amer J Hum Genet. 70 (2002):
425-434.

print.haplo.em 43

See Also

haplo.score.slide

Examples

#This example is run completely in the haplo.score.slide

setupData(hla.demo)

attach(hla.demo)

geno.11 <- hla.demo[,-c(1:4)]

label.11 <- c("DPB","DPA","DMA","DMB","TAP1","TAP2","DQB","DQA","DRB","B","A")

#For an ordinal trait, slide by 3 loci, and simulate p-values:

y.ord <- as.numeric(resp.cat)

slide.ord.sim <- haplo.score.slide(y.ord, geno.11, trait.type = "ordinal",

n.slide=3, locus.label=label.11, simulate=TRUE,

sim.control=score.sim.control(min.sim=500))

print(slide.ord.sim)

plot(slide.ord.sim)

plot(slide.ord.sim, pval="global.sim")

plot(slide.ord.sim, pval="max.sim")

print.haplo.em Print contents of a haplo.em object

Description

Print a data frame with haplotypes and their frequencies. Also print likelihood information.

Usage

print.haplo.em(x, nlines=NULL, ...)

Arguments

x A haplo.em object

nlines To shorten output, print the first 1:nlines rows of the large data frame.

... optional arguments for print

Details

Value

Nothing is returned

Side Effects

44 print.haplo.glm

References

See Also

haplo.em

Examples

print.haplo.glm Print a contents of a haplo.glm object

Description

Print model information and then haplotype information.

Usage

print.haplo.glm(x, print.all.haplo=FALSE, digits =
max(options()$digits - 4, 3), ...)

Arguments

x A haplo.glm object
print.all.haplo

Logical. If TRUE, print all haplotypes considered in the model.
digits Number of numeric digits to print.
... Optional arguments for print method

Details

Value

Nothing is returned

Side Effects

References

See Also

haplo.glm

Examples

print.haplo.group 45

print.haplo.group Print a haplo.group object

Description

Method function to print a class of type haplo.group

Usage

print.haplo.group(x, digits=max(options()$digits-2, 5), nlines=NULL, ...)

Arguments

x The object returned from haplo.group (which has old class haplo.group).

digits Set the number of significant digits to print for haplotype probabilities.

nlines For shorter output, print first 1:nlines rows of the large data frame

... Optional arguments for the print method

Details

This is a print method function used to print information from the haplo.group class, with
haplotype-specific information given in a table. Because haplo.score is a class, the generic
print function can be used, which in turn calls this print.haplo.group function.

Value

Nothing is returned.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Expected haplotype fre-
quencies for association of traits with haplotypes when linkage phase is ambiguous. Sub-
mitted to Amer J Hum Genet.

See Also

haplo.score, haplo.group, haplo.em

Examples

46 print.haplo.score

print.haplo.score Print a haplo.score object

Description

Method function to print a class of type haplo.score

Usage

print.haplo.score(x, digits, nlines=NULL, ...)

Arguments

x The object returned from haplo.score (which has class haplo.score).

digits Number of digits to round the numeric output.

nlines Print the first ’nlines’ rows of the large data frame for fast, short view of
the results.

... Dynamic parameter for the values of additional parameters for the print
method.

Details

This is a print method function used to print information from haplo.score class, with
haplotype-specific information given in a table. Because haplo.score is a class, the generic
print function can be used, which in turn calls this print.haplo.score function.

Value

Nothing is returned.

Side Effects

See Also

haplo.score

Examples

print.haplo.score.merge 47

print.haplo.score.merge

Print a haplo.score.merge object

Description

Method function to print a class of type haplo.score.merge

Usage

print.haplo.score.merge(x, order.by="score", all.haps=FALSE,
digits=max(options()$digits-2, 5), nlines=NULL, ...)

Arguments

x The object returned from haplo.score.merge (which has old class {S}
haplo.score.merge).

order.by Column of the haplo.score.merge object by which to order the results.
all.haps Logical, if (T)rue prints a row for all haplotypes. If (F)alse, the default,

only prints the haplotypes kept in haplo.score for modelling.
digits Set the number of significant digits to print for the numeric output.
nlines Print the first ’nlines’ rows of the large data frame for a short view of the

results.
... Dynamic parameter for the values of additional parameters for the print

method.

Details

This is a print method function used to print information from the haplo.score.merge class.
Because haplo.score.merge is a class, the generic print function can be used, which in turn
calls this print.haplo.score.merge function.

Value

Nothing is returned.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Expected haplotype fre-
quencies for association of traits with haplotypes when linkage phase is ambiguous. Sub-
mitted to Amer J Hum Genet.

See Also

haplo.score.merge, haplo.score, haplo.group

Examples

#see example for haplo.score.merge

48 print.haplo.score.slide

print.haplo.score.slide

Print the contents of a haplo.score.slide object

Description

Print the data frame returned from haplo.score.slide

Usage

print.haplo.score.slide(x, digits=max(options()$digits - 2, 5), ...)

Arguments

x A haplo.score.slide object

digits Number of digits to print for numeric output

... Optional arguments for the print method

Details

Value

Side Effects

References

See Also

Examples

printBanner 49

printBanner Print a nice banner

Description

Usage

printBanner(str, banner.width=80, char.perline=60, border="=")

Arguments

str character string - a title within the banner

banner.width width of banner

char.perline number of characters per line for the title

border type of character for the border

Details

Value

Side Effects

References

See Also

Examples

printBanner("This is a pretty banner", banner.width=40, char.perline=30)

#==

This is a pretty banner

#==

50 score.sim.control

residScaledGlmFit Scaled Residuals for GLM fit

Description

For internal use within the haplo.stats library

Usage

residScaledGlmFit(fit)

Arguments

fit

Details

Value

Side Effects

References

See Also

Examples

score.sim.control Create the list of control parameters for simulations in
haplo.score

Description

In the call to haplo.score, the sim.control parameter is a list of parameters that control
the simulations. This list is created by this function, score.sim.control, making it easy to
change the default values.

Usage

score.sim.control(p.threshold=0.25, min.sim=1000, max.sim=20000.,verbose=FALSE)

score.sim.control 51

Arguments

p.threshold A paremeter used to determine p-value precision from Besag and Clif-
ford (1991). For a p-value calculated after min.sim simulations, continue
doing simulations until the p-value’s sample standard error is less than
p.threshold * p-value. The dafault value for p.threshold = 1/4 corre-
sponds approximately to having a two-sided 95% confidence interval for
the p-value with a width as wide as the p-value itself. Therefore, simula-
tions are more precise for smaller p-values. Additionally, since simulations
are stopped as soon as this criteria is met, p-values may be biased high.

min.sim The minimum number of simulations to run.

max.sim The upper limit of simulations allowed. When the number of simulations
reaches max.sim, p-values are approximated based on simulation results
at that time.

verbose Logical, if (T)rue, print updates from every simulation to the screen. If
(F)alse, do not print these details.

Details

In simulations for haplo.score, employ the simulation p-value precision criteria of Besag
and Clifford (1991). The criteria ensures both the global and the maximum score statistic
simulated p-values be precise for small p-values. First, perform min.sim simulations to
guarantee sufficient precision for the score statistics on individual haplotypes. Then continue
simulations as needed until simulated p-values for both the global and max score statistics
meet precision requirements set by p.threshold.

Value

A list of the control parameters:

p.threshold As described above

min.sim As described above. If run-time is an issue, a lower minimum (e.g. 500)
may be useful.

max.sim As described above

verbose As described above

Side Effects

References

Besag, J and Clifford, P. ”Sequential Monte Carlo p-values.” Biometrika. 78, no. 2 (1991):
301-304.

See Also

haplo.score

52 setupData

Examples

it would be used in haplo.score as appears below

#

score.sim.500 <- haplo.score(y, geno, trait.type="gaussian", simulate=T,

sim.control=score.sim.control(min.sim=500, max.sim=2000)

setupData Set up an example dataset provided within the library.

Description

This function defines an alias function to run exactly as data() in R and does nothing in
Splus. R keeps a data set within the working data frame, so we only want to load data
it when calling an example. Splus keeps it in background, so it is already loaded upon
library(mypkg).

Usage

setupData(...)

Arguments

... The name of a dataset provided within the Splus/R library.

Details

Value

Side Effects

References

See Also

Examples

setupGeno 53

setupGeno Create a group of locus objects from a genotype matrix, assign to
’model.matrix’ class.

Description

The function makes each pair of columns a locus object, which recodes alleles to numeric
and saves the original alleles as an attribute of the model.matrix.

Usage

setupGeno(geno, miss.val=c(0,NA))

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns of
alleles, and the order of columns corresponds to the order of loci on a
chromosome. If there are K loci, then ncol(geno) = 2*K. Rows represent
alleles for each subject.

miss.val A vector of codes denoting missing values for allele1 and allele2. Note
that NA will always be treated as a missing value, even if not specified in
miss.val. Also note that if multiple missing value codes are specified, the
original missing value code for a specific individual can not be retrieved
from the loci object.

Details

Value

A ’model.matrix’ object with the alleles recoded to numeric values, and the original values
are stored in the ’unique.alleles’ attribute. The ith item of the unique.alleles list is a vector
of unique alleles for the ith locus.

Side Effects

References

Note

A matrix that contains all elements of mode character will be sorted in alphabetic order.

See Also

locus, loci, haplo.glm

54 summary.haplo.em

Examples

Create some loci to work with

a1 <- 1:6

a2 <- 7:12

b1 <- c("A","A","B","C","E","D")

b2 <-c("A","A","C","E","F","G")

c1 <- c("101","10","115","132","21","112")

c2 <- c("100","101","0","100","21","110")

myGeno <- data.frame(a1,a2,b1,b2,c1,c2)

myGeno <- setupGeno(myGeno)

myGeno

attributes(myGeno)$unique.alleles

summary.haplo.em Summarize contents of a haplo.em object

Description

Display haplotype pairs and their posterior probabilities by subject. Also display a table
with number of max haplotype pairs for a subject versus how many were kept (max vs.
used).

Usage

summary.haplo.em(object, show.haplo=FALSE, nlines=NULL, ...)

Arguments

object A haplo.em object

show.haplo Logical. If TRUE, show the alleles of the haplotype pairs, otherwise show
only the recoded values.

nlines To shorten output, print the first 1:nlines rows of the large data frame.

... Optional arguments for the summary method

Details

Value

Side Effects

References

summaryGeno 55

See Also

haplo.em

Examples

summaryGeno Summarize Full Haplotype Enumeration on Genotype Matrix

Description

Provide a summary of missing allele information for each individual in the genotype matrix.
The number of loci missing zero, one, or two alleles is computed, as well as the total number
of haplotype pairs that could result from the observed phenotype.

Usage

summaryGeno(geno, miss.val=0)

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns
of alleles, and the order of columns corresponds to the order of loci on
a chromosome. If there are K loci, then geno has 2*K columns. Rows
represent all observed alleles for each subject.

miss.val Vector of codes for allele missing values.

Details

After getting information on the individual loci, this function makes a call to geno.count.pairs().
The E-M steps to estimate haplotype frequencies considers haplotypes that could result
from a phenotype with a missing allele. It will not remove a subject’s phenotype, only the
unlikely haplotypes that result from it.

Value

Data frame with columns representing the number of loci with zero, one, and two missing
alleles, then the total haplotype pairs resulting from full enumeration of the phenotype.

Side Effects

See Also

geno.count.pairs, haplo.em

Examples

56 varfunc.glm.fit

varfunc.glm.fit Variance Function for GLM

Description

For internal use within the haplo.stats library

Usage

varfunc.glm.fit(fit)

Arguments

fit

Details

Value

Side Effects

References

See Also

Examples

Index

∗Topic classes
locus, 36

∗Topic datasets
hla.demo, 32

allele.recode, 3

dglm.fit, 4

geno.count.pairs, 4, 54
geno.recode, 5
Ginv, 2
glm.fit.nowarn, 6

haplo.em, 5, 8, 11, 14, 25, 43, 54
haplo.em.control, 10, 25
haplo.em.fitter, 12
haplo.enum, 13
haplo.glm, 7, 14
haplo.glm.control, 19
haplo.group, 20, 28
haplo.hash, 21
haplo.model.frame, 22
haplo.score, 11, 23, 28, 31, 50
haplo.score.glm, 26
haplo.score.merge, 27
haplo.score.podds, 28
haplo.score.slide, 30, 42
hla.demo, 32

locator.haplo, 33
loci, 34
locus, 36
louis.info, 37

mf.gindx, 38

na.geno.keep, 39

plot.haplo.score, 25, 39
plot.haplo.score.slide, 31, 41
print.haplo.em, 42
print.haplo.glm, 43
print.haplo.group, 44
print.haplo.score, 25, 45

print.haplo.score.merge, 46
print.haplo.score.slide, 47
printBanner, 48

residScaledGlmFit, 49

score.sim.control, 25, 31, 49
setupData, 51
setupGeno, 52
summary.haplo.em, 53
summaryGeno, 5, 54

varfunc.glm.fit, 55

57

	Ginv
	allele.recode
	dglm.fit
	geno.count.pairs
	geno.recode
	glm.fit.nowarn
	haplo.em
	haplo.em.control
	haplo.em.fitter
	haplo.enum
	haplo.glm
	haplo.glm.control
	haplo.group
	haplo.hash
	haplo.model.frame
	haplo.score
	haplo.score.glm
	haplo.score.merge
	haplo.score.podds
	haplo.score.slide
	hla.demo
	locator.haplo
	loci
	locus
	louis.info
	mf.gindx
	na.geno.keep
	plot.haplo.score
	plot.haplo.score.slide
	print.haplo.em
	print.haplo.glm
	print.haplo.group
	print.haplo.score
	print.haplo.score.merge
	print.haplo.score.slide
	printBanner
	residScaledGlmFit
	score.sim.control
	setupData
	setupGeno
	summary.haplo.em
	summaryGeno
	varfunc.glm.fit
	Index

