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ABSTRACT

A method is given for design of experiments to detect associa-
tions (linkage disequilibrium) in a random population between
a marker and a quantitative trait locus (QTL), or gene, with a
given strength of evidence, as defined by the Bayes factor. Using
a version of the Bayes factor which can be linked to the value of
an F'-statistic together with an existing deterministic power cal-
culation, makes it possible to rapidly evaluate a comprehensive
range of scenarios, demonstrating the feasibility, or otherwise, of
detecting genes of small effect. The Bayes factor is advocated
for use in determining optimal strategies for selecting candidate
genes for further testing or applications. The prospects for fine
scale mapping of QTL are re-evaluated in this framework. We
show that large sample sizes are needed to detect small effect
genes with a respectable sized Bayes factor, and to have good
power to detect a QTL allele at low frequency it is necessary to

have a marker with similar allele frequency near the gene.

KEYWORDS : Linkage disequilibrium, Association tests, QTL, QTN,

Genome scan, Candidate genes, Experimental design, Bayes factor.

The advent of dense maps of single nucleotide polymorphisms (SNPs)
covering the genome with 300,000 or more markers offers new opportunities

find and identify genes, by testing for population level associations between



the SNP and disease or other trait of interest. Associations occur because of
linkage disequilibrium between the marker and trait. ‘Linkage disequilibrium
(LD) mapping’ aims to detect and locate genes relative to a map of existing
genetic markers. Location information is obtained because the distance be-
tween the gene and a marker on a chromosome is one factor influencing the
closeness of association between the gene and marker. In a population, re-
combinations affecting the association between a gene and marker may occur
over many generations. This potentially gives a much finer resolution than
pedigrees used for quantitative trait loci (QTL) mapping. Finer resolution
comes at a cost, however. More genotyping is needed per individual and as
we shall show, larger sample sizes are needed to take advantage of a finer level
of resolution. In this paper we develop experimental design techniques nec-
essary to find the sample size needed reliably detect a given level of linkage

disequilibrium between a bi-allelic QTL and marker.

This paper is structured as follows. First we review prospects for LD
mapping with SNP markers, possible strategies and results to date, including
problems with reliability of detected QTL, illustrating the need for a sound
measure of statistical evidence, and experimental design. Then we discuss
measures of statistical evidence, or criteria for ‘detecting’ associations. We
argue that there are problems with commonly used p-values as a measure
of evidence and advocate the Bayes Factor (see e.g. SPIEGELHALTER and
SMITH 1982) as a replacement measure. Then, we review and correct the
deterministic power calculation from Luo (1998), and the classical approach

to power of experiments, then introduce a generic Bayes factor (SPIEGEL-



HALTER and SMITH 1982) for comparing linear models, in the absence of
prior information. This is linked to the classical power calculation, to give
designs with a given probability to detect an effect with a given Bayes factor.
Results are presented for sample sizes ranging from 600 to 4800 and Bayes
factors ranging from 1/20 to 20, and for a range of QTL and marker allele
frequencies ranging from 0.01 to 0.5 for sample sizes ranging from 600 to
38400 with a Bayes factor of 20. Applications to genome scans and testing
large sets of candidate genes are discussed, with results for posterior odds
ranging from 1/20 to 20 (Bayes factors ranging from 250 to 1000 000). The
discussion section gives wider applications and implications of the method

for strategies for gene discovery.

KRUGLYAK (1999), reviewing prospects for whole genome linkage dise-
quilibrium mapping, suggests that the useful range of linkage disequilibrium
in the human population is around 3kb, corresponding to a map with 500,000
SNP markers. The high density of SNP markers, combined with the short
range of linkage disequilibrium in a population means that it is possible,
in principle, to locate SNPs near the genes and hence to sequence regions
containing genes. Results in the literature on the range of useable linkage
disequilibrium are variable. DUNNING et al (2000) report a similarly low
range of disequilibrium in humans, while TAILLON-MILLER et al (reviewed
in BOEHNKE (2000)) report strong LD at distances as high as 1Mb. At the
other extreme LD extending over a wide range has been reported in domes-
ticated species by e.g. DUNNER et al (1997), and FARNIR et al (2000) for
cattle and by MCRAE et al (2002) for sheep, who reported LD even between



unlinked markers.

The relatively short range of linkage disequilibrium in some populations
makes it possible, in principle, to study complex diseases with non-Mendelian
inheritance (i.e. disease is not caused by a single gene, but there are a number
of genes contributing to disease susceptibility). If other populations with
LD extending over a somewhat greater range can be found this reduces the
amount of marker genotyping to more affordable levels, at a cost of lower
potential resolution. See RiscH (2000) for a discussion of the issues and

optimal ‘post-genome’ strategies.

Similar considerations apply to quantitative traits. Colleagues in the
Forest Research Cell Wall Biotechnology Centre are interested in economic
traits for forest trees, such as growth rate or wood density. Results from
QTL mapping studies (WILCOX et al 1997; KUMAR et al 2000; BALL 2001)
suggest that these traits may be influenced by a number of smaller effect

genes.

ROSEs (2000) discusses a strategy for determining an individual’s re-
sponse to medicine(s), based on selecting a subset of SNP markers associated
with the responses to medicine(s) of interest, then using the values of these

SNPs for an individual to predict the individual’s response.

There are two general strategies for detecting associations: testing for
random associations in a population or using family based tests such as
the transmission disequilibrium test (ALLISON 1997; LONG and LANGLEY

1999; SPIELMAN and EWENS, 1998; BOEHNKE and LANGEFELD 1998). See



NIELSEN and ZAYKIN (2001) for a review.

The random population association test has the disadvantage of being
confounded with allele frequency differences in subpopulations, if there is any
population substructure, while the transmission disequilibrium test requires

availability of many small families.

Note: Where there may be population substructure we recommend the
method of PRITCHARD et al (2000a, 2000b) for estimating and allowing for
population substructure. This requires additional markers and may reduce

power due to the additional number of parameters to be estimated.

With either of these strategies there are currently two common approaches:
testing for single marker associations or testing haplotypes based on a com-
binations of marker values associated with the disease or quantitative trait.
In this paper, we consider the single marker approach, with data from as-
sociation studies, but note the method could be applied to haplotype data

where two classes of haplotypes are considered.

The large number of possible SNPs, and the even larger number of possi-
ble haplotype combinations makes it essential to have soundly based statis-
tical evidence for putative associations. This may not be the case in general
in published literature: ALTSHULER et al (2000), discussed in GURA (2001,
p594):

“...a team lead by Altshuler tried a slightly different approach.
The invesigators went back to published studies linking other

SNPs to diabetes ...and retested 16 reported SNPs in a new



group. . . 13 SNPs were common enough in the population to study
...only one SNP held up in the target populations ...the SNP
association had been reported in 1998, but four out of five subse-
quent analyses with only a few hundred patients each could not

confirm the linkage.”

These results are summed up by Altshuler (HAMPTON 2000):

“The lack of replication of the others points to the need for larger
samples, controls for population differences, and stronger statisti-

cal evidence prior to claiming an association.” (emphasis added)

TERWILLIGER and WEISS (1998, Figure 4) show the distribution of around
260 reported p-values from association studies in two journals, and note that
there is no evidence of departure from the uniform distribution (i.e. no evi-

dence of any real effect):

“...investigators are too frequently gambling on and publishing

results in situations where the evidence is not at all compelling.”

These results point to lack of reliability of published results. Clearly,
the statistical criteria used have not lead to reliability of ‘detected’ SNPs in
these examples. Experience, and the results below, suggest this problem is
likely to be widespread. The objective of this paper is to design experiments
for testing associations with the required quantifyably stronger statistical

evidence.



TERWILLIGER and WEISS (1998) suggest as a cause of the problem, that
the simple model underlying the association tests does not reflect the genetic
complexity, citing allelic and non-allelic heterogeneity, genetics by environ-
ment interactions, intra gene interactions (epistasis) etc. We suggest that,
while this may be true, resulting in complex statistical interactions, there is
no hope of detecting the interactions if one cannot first detect and isolate the
main effects, which would imply a model similar to that underlying associa-
tion tests. We suggest the problem is not with the model but with the basic
statistical experimental design (insufficient power) and statistical criteria for

detection (p-values).

Euvidence for a real effect: p-value and posterior probability for Hi. We
argue that the p-value, the commonly used measure of statistical significance,
is not a sound measure of evidence for a real effect, and that the solution of
the problems is to adopt a sound framework for statistical inference, based
on probability theory, first given in BAYES (1763). The p-value measures
only the proportion of times a more extreme value of the test statistic result
is obtained among repeated experiments assuming the null hypothesis of no
effect holds. The p-value is not the same as the reliability, which is the

proportion of times the ‘detected’ effects are real.

A low p-value shows that the null hypothesis (Hp) (e.g. a model with
no linkage disequilibrium or no QTL effect, plus various distributional and
independence assumptions), is unlikely to be the true model, and the null
hypothesis is said to be ‘rejected’. This is often interpreted as evidence for a

real effect by end users. This interpretation is flawed, however, because the



p-value is not the same as the probability that the null hypothesis is true.
The correct interpretation is that the significance level represents a hurdle
for the experimenter to get over, often a necessary condition for publication,
nothing more. A given p-value may or may not correspond to strong evidence

for a real effect.

The p-value measures differences between the true model and H,. Since
any model is only an approximation to the process generating the data, sta-
tistical ‘significance’ (p < a, for any given «) will be obtained for sufficiently
large sample sizes. There is no guarantee, however, that the alternative hy-
pothesis (e.g. a model with non-zero linkage disequilibrium between a marker
and QTL plus similar distributional and independence assumptions) which
we wish to establish, is any more likely. In other words, there is no guarantee
that any given p-value represents positive evidence for the effect being tested.
This problem gets worse as sample sizes increase—for a given p-value, the
relative likelihood of the alternative hypothesis gets smaller and smaller as

the sample size gets larger and larger.

In summary, there is no good relationship between p-values and evidence
for an effect which is independent of sample size. In the Bayesian framework
for statistical analysis, reliability is given by the posterior probability for
the alternative hypothesis (H;). Proper use of Bayesian methodology would
immediately show up weak evidence to both the reader and the experimenter,

pointing to the need for further replication.

Over-estimation of effects: selection bias. A related problem is over-

estimation of effects caused by selection bias. If effects of selected markers
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are real but not reliably detected, i.e. the power of detection is not high,
then re-using the same data to estimate the size of an effect as was used to
select a marker results in an upwards bias in the size of effects which can
be large, in percentage terms. The solution is to either use an independent
population to obtain unbiased estimates of effects (which is inefficient) or,
in the Bayesian framework, to use model averaging. See BALL (2001) for a
Bayesian model averaging approach for obtaining unbiased estimates in the

QTL mapping context. '

Other problems. The interpretation of p-values as representing good evi-
dence for real effects is one, though possibly not the only problem with reli-
ability of published data. Other problems may include spurious associations
arising from neglecting population structure or inadequate experimental de-
sign. Or, it may be that the genetic effects are not be ‘stable’ across different
environments or sub-populations sampled by various trials. Before claiming
that there is instability, however, we need to be sure there really was good
evidence for an effect in the first place, then obtain good evidence for an

interaction.

This paper quantifies the level of replication required for association stud-
ies, for reliably detecting linkage equilibrium between a DNA marker (or
gene) and a trait, with particular interest in detecting small effect genes.

To do this we apply the Bayesian approach to assessing evidence, using the

!The model averaging approach applies ideally to sets of multiple markers, but can
also be applied when considering only a single marker, in which case the models averaged
over correspond to the null hypothesis Hy with no effect and the alternative hypothesis
H; with a real effect.
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Bayes factor. Sample sizes needed to detect effects of various sizes with a
given strength of evidence as defined by the Bayes factor, with a given prob-
ability (power), for a given level of linkage disequilibrium between a bi-allelic

marker and a bi-allelic quantitative trait locus, are determined.

We make use of an existing deterministic power calculation (LUO 1998),
for the power of detecting linkage disequilibrium between a bi-allelic quan-
titative trait locus (QTL) and a marker. The type I error rate (or p-value)
corresponding to the desired Bayes factor is determined, for each set of pa-

rameter values and plugged into the deterministic power calculation.
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Genetic model: We will assume a bi-allelic marker with alleles M, m
and a bi-allelic QTL with alleles A, a. Following Luo (1998), let g, p be the
probability of A, M respectively. In the bi-allelic case, linkage disequilibrium
is specified by a single coefficient, D, such that the joint probabilities of alleles

are given by:-

Pr(A, M) = Pr(A)Pr(M)+D=qp+D, (1)

Pr(A,m) = Pr(A)Pr(m)—D =q(1-p)-D, (2)
(Cf WEIR 1996). It follows that the conditional probabilities are given by

Q@ = Pr(A|M)=q+ D/p, (3)

R = Pr(A|m)=q—D/(1-p) (4)

The genotypic frequencies of pairwise combinations of QTL and marker geno-

types are determined from these quantities. (Table 1.)

Table 1: Expected genotypic frequencies and phenotypic values from Luo
(1998) for QTL/marker genotype combinations. Marker genotypes are M M,
Mm, mm; QTL genotypes are AA,Aa,aq.

frequencies (f;;) expected
marker MM Mm mm value
QTL
AA p°Q’ 2p(1 - p)QR (1-p)*R? d
Aa 2°Q(1-Q) 2p(1-p)(@+R-2QR) 2(1-p)’R(1-R) h
aa P’1-0)? 2p(1-p(1-Q)(A-R) (1-p?*1-R)? —d

Statistical models: The statistical model for observed phenotypes is
Yijk = b+ Bi + wij + eijr,  eijr ~ N(0,07), (5)
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where i, 7, k index marker genotype, QTL genotype and observations within
marker and QTL genotype, respectively. Since the QTL genotypes are unob-
served, the data is analysed with a one-way analysis of variance model, with

marker genotypes as groups i.e.
Yik = b+ Bi + €k, € ~ N(0,0,,), (6)
The ANOVA table for this analysis is shown in Table 2.

Table 2: ANOVA table for single marker analysis

df SS MS F

between marker classes =2 SS, MS,=8S/vrn F=DMSy,/MS,
within marker classes vo=n—-3 SSy, MS,=S5S,/vs

Classical power calculation: Classical statistical experimental design
seeks to determine designs with a given ‘power’ P at a given significance
level « i.e. the probability of obtaining a result with p-value less than «, is
P assuming the effect to be detected is at least a certain size. The effect is

said to be ‘detected’ if this significance level is obtained.
The null hypothesis is ‘rejected’ at level « if the observed value F' statistic
is greater than the 1 — o point of its distribution under the null hypothesis:
F> Fl—a:l/1,l/2 (7)
where Fi_q., ., is the 1 — o point of the F' distribution on vy, v, degrees of
freedom.

The probability of rejecting the null hypothesis or power is the probability

that the I statistic exceeds the critical value. To find this probability we
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need to know the actual distribution of the F statistic under the alternative
hypothesis, which in this case means there is a bi-allelic QTL in linkage

disequilibrium with a marker with parameters D, d, h, p, q¢ defined above.

Under the alternative hypothesis F' is distributed as a non-central F' dis-

tribution with non-centrality parameter ¢ given by:

— vy, (8)

where EMS,, EMS,, are the expected values of the mean squares between
and within marker classes (Cf Table 2; LuUO equation 6.2; JOHNSON AND

Kotz 1972, p 189). The power is given by:
PT(FV1,V2 (5) > Fl_a:Vl,V2)’ (9)

where F, ,,(d) is a random variable with the F' distribution with vy, vy de-

grees of freedom and non centrality parameter ¢.

To determine ¢ and complete the calculation, it remains to determine the
expected mean squares EMS,, EMS,, for the problem. Details of the cal-
culation including derivation of modified values for w3, EM Sy, and EM S,

are given in Appendix 1.
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Experimental design with power to obtain a given Bayes factor:

Bayes’ theorem follows from the basic law of conditional probability:

Pr(A| B)Pr(B) = Pr(AN B) = Pr(B | A)Pr(A) (10)

Pr(A| B) = Pr(B | A)Pr(A)/Pr(B). (11)

If we have observed B the probability of A being true is Pr(A | B).
Bayesian statistics applies this with B as the data (y) and A as an unknown
parameter (#). Replacing A by 6 and B by y and representing the probability

functions by f, 7 and g gives
90 [ y)f(y) = fly | 6)m(0) (12)
It follows (by integrating both sides over 6) that

1) = [ £y | O)m(6) (13)

fly | 0)=(6)
J 1y | 0)m ()

This has the following interpretation: the prior distribution w (), repre-

90 y) = (14)

sents our knowledge of the unknown 6 before observing the data y, and the
posterior distribution g(0 | y) represents our knowledge of the unknown 6
after observing the data. In other words 7 has been updated to g. f(y) is the
probability of the data.

Now suppose we have two hypotheses (or models) Hy (e.g. the hypothesis

of no linkage disequilibrium), and H; (e.g. the hypothesis of a non-zero QTL

16



effect in linkage disequilibrium with a marker). Each hypothesis represents
a model with unknown parameters and probability density functions. Let
6; be the parameters under H; (i = 0,1) and let 7;(6;), fi(y | 6:), ¢i(6;i | v),
fi(y) be the probability functions. Now f;(y) is the probability of the data
under hypothesis H;, so we write it as a conditional probability Pr(y | H;).

Additionally let 7;( H;) denote the prior probabilities for each model.

The Bayes factor, B, measures the strength of evidence in the data in
support of one hypothesis (or model) H; (e.g. the hypothesis of a non-zero
QTL effect in linkage disequilibriumm with a marker) over another Hy (e.g.
the hypothesis of no linkage disequilibrium ), and is defined as the ratio of
the probability of the data under H; to the probability of the data under H,

1.e.
Pr(y | Hy)

B=—7%>" """~
Pr(y\HO)

(15)

Higher Bayes factors (greater than 1) are stronger evidence for Hj, while
lower Bayes factors (less than 1) are evidence for Hy. A Bayes factor of 1
means the data are equally likely under Hy and Hi, so there is no evidence

either way. Bayes’ theorem in this case can be written as
Pr(Hy | y)/Pr(Ho | y) = B x w(Hy)/7(Ho) (16)
where 7w(H;), Pr(H; | y) are the prior and posterior probabilities of H; i.e.
posterior odds = Bayes factor x prior odds. (17)

The Bayes factor has a natural interpretation in terms of betting odds. Prior

odds are the odds we would be prepared to bet on prior to seeing the data;
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posterior odds are the odds we would be prepared to bet on after seeing the
data. Equation (17) has the interpretation that the Bayes factor is the factor
by which we multiply our prior odds after seeing the data. For example if
we had prior odds of 1: 10 (i.e. odds against a QTL in a given region), and
a Bayes factor of 100 our posterior odds would be 10 : 1 (100 x 1/10 = 10).
This may not sound impressive to readers accustomed to p-values less than
0.01 or even 0.001 but we shall see that it is not easy to obtain evidence
this strong. For example in a t-test, with a non-informative or nearly non-
informative prior distribution on the effect and sample size greater than 100,
a p-value of 0.05 can correspond to a Bayes factor less than 1, i.e. little or
no evidence against Hy or even evidence for Hy. (Cf BERGER and BERRY

1998, and Table 3 below).

Note: The reader may notice some similarity between the likelihood ratio
and the Bayes factor: in fact the Bayes factor is the same as the likelihood
ratio—if there are no unknown parameters. However use of the Bayes factor

is not the same as the use of the likelihood ratio test (Cf the discussion).

Prior odds are part of prior knowledge, but do not affect the Bayes factor.
The Bayes factor is, however, affected by the prior distribution of parameters
(m;(6;) above), particularly the parameters being tested. In general the more
prior information we have on the parameter values under H;, the higher the

Bayes factor we will obtain.

In a particular situation, where there is prior information one should
choose somewhat conservative prior distributions for these parameters, so

the evidence for an effect is not exaggerated. A vague prior which puts most
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prior mass on very large numbers, should not be used naively either—in the
limit as prior information tends to zero, the Bayes factor also tends to zero.
To develop a generic method, or where there is no prior information, one
way to proceed is to start with priors with little or no prior information and
update these priors using a small ‘training sample’ (y,), (i.e. replace the
priors by the posteriors after observing y,) and use the rest of the data to
estimate the Bayes factor with the updated priors. It can be shown that this

is equivalent to defining

B(y) = By(y)/Bo(ya) (18)

where By(y) denotes the Bayes factor with data y and the original priors and

B(y) is the Bayes factor with data y and the updated priors.

Note that now, (setting y = y, in (18)), the Bayes factor is calibrated to
be 1 for the small training sample. This is reasonable because the training
sample is small, so contains little or no evidence either way, which is con-
sistent with the interpretation of B(y) = 1. This is the motivation for the
approach of SPIEGELHALTER and SMITH (1982) who obtain, for a one-way

analysis of variance model :-

where m is the number of groups, n; the number in each group, n is the total

sample size, and F' is the classical F'-value.

This form of the Bayes factor is particularly convenient, because it links

directly to the F'-statistic used in existing power calculations. To detect an
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association with power P to achieve a given Bayes factor B we solve for F' in

(19), and select a design using the existing deterministic power calculation.

Equation (19) applies to testing for linkage disequilibrium, (Cf the ANOVA
table, Table 2), where m = 3 is the number of marker classes, and ny, ny, n3
are the number of observations in each marker class, and F' is the F-value.
To obtain a deterministic formula we set nq, ng, n3 to their expected values
based on the frequencies of marker classes M M, Mm, mm in Table 1, and

the total sample size:
ny = np®,ng = 2np(1 — p),n3 = n(1 — p)%. (20)

Substituting in (19) gives

1/2 —n/2
B~ [4np*(1 - p)*] / [1 o i 3)F] . (21)

This should be a good approximation for the large sample sizes we need:
variations in observed proportions in each marker class will be small, and
hence will have little effect on the relationship between the I’ value and

Bayes factor in (19).

For any valid choice of values of QTL/marker allele frequencies, effects
and linkage disequilibrium parameters D, d, h, p, q, sample size n and Bayes
factor B we can solve for F' = Fi_,.,2 in (21), then lookup the value of o
from the F-distribution. Then given o and n determine the power, P, from
the classical power calculations. To determine the sample size n, for given B

and P we use interpolation.

R code used for the calculations of this paper will be submitted to the

20



Comprehensive R archive network (CRAN), (http://lib.stat.cmu.edu/R/CRAN).
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RESULTS

Table 3 shows the type I error rates (or p-values) corresponding to var-
ious Bayes factors. For a desired Bayes factor, (e.g. B = 10 which implies
the data are 10 times more likely under the hypothesis of a real effect, than
under the hypothesis of no effect), look up the type I error rate in the table
for the sample size desired. For example, if the sample size is 1728, we need
a type I error rate of o < 2.35 x 10™* to get B = 10. If the sample sizes
is 300, we need a type I error rate of o < 1.42 x 1073 to get B = 10. For
these sample sizes, & = 0.05 and even o = 0.01 are clearly not a good op-
tion, corresponding mostly to Bayes factors less than 1. For example with
n = 864, B = 1/10, we have P = 0.05— showing that a p-value of 0.05 can

correspond to evidence against an effect.

Table 3: Type I error rates (p-values) corresponding to various Bayes factors,
for testing for linkage disequilibrium between a bi-allelic marker and QTL.

Bayes factor (B)

n

1/20

1/10

/5

1

5

10

20

300
432
600
864
1200
1728
2400
3756
4800

0.270
0.188
0.135
0.093
0.067
0.047
0.033
0.021
0.017

0.136
0.094
0.068
0.047
0.034
0.023
0.017
0.011
0.008

0.069
0.047
0.034
0.023
0.017
0.012
0.008
0.005
0.004

0.0139
0.0096
0.0068
0.0047
0.0034
0.0023
0.0017
0.0010
0.0008

2.83x1073
1.94x1073
1.38x1073
9.49%x 104
6.84x1074
4.69x1074
3.37x10°4
2.15%x1074
1.68x10~*

1.42x1073
9.73x10~*
6.92%x10~*
4.76x10~*
3.40x107*
2.35%x1074
1.69x10*
1.07x10~*
8.38x10°°

7.18x107%
4.89x10~*
3.47x107*
2.39x10~*
1.71x107*
1.18x10*
8.44x10°°
5.37Tx107®
4.19%x107°

Table 4 is a comparison with results for 12 sample populations from Luo
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(1998). Ppos5 is the power to detect an effect with comparison-wise signifi-
cance level a = 0.05, as shown in LLuo Table 3. Also shown are the equivalent
Bayes factors, B, and the sample size np,, required to obtain a Bayes factor
of 20 with power 0.9. Note that the Bayes factors for the original sample sizes
are all less than 1, i.e. not coresponding to positive evidence for a real effect.
The sample sizes np,, are the sample sizes required to have good power to
detect an effect with fairly strong evidence, and are substantially (up to 13

times) larger.

Table 4: Comparison with results from Luo (1998). Results are shown for
the 12 example populations (Cf Luo TABLES 2, 3.) with sample size n,
marker and QTL allele frequencies p, and ¢, linkage disequilibrium D, QTL
heritability h,% and dominance ratio ¢. Py g5 is the power to detect an effect
with o = 0.05, B is the corresponding Bayes factor, and np,, is the sample
size required to achieve a Bayes factor of 20 with power 0.9.
pop. n  p q D hy ¢ Puos B npy,
100 05 05 01 0.1 0.0 0.18 0.88 1837
200 0.5 05 0.1 0.1 0.0 0.34 042 1837
200 0.5 05 0.2 0.1 00 091 042 381
200 0.5 0.5 0.1 0.2 0.0 0.62 042 849
200 0.5 0.5 0.1 0.1 0.5 0.31 042 2047
200 0.5 0.5 0.1 0.1 1.0 0.25 042 2640
200 0.3 0.3 0.1 0.1 0.0 0.46 0.54 1211
200 0.7 0.7 0.1 0.1 0.0 0.46 0.54 1211
9 200 0.3 0.5 0.1 0.1 0.0 0.39 0.54 1476
10 200 05 0.3 0.1 0.1 00 0.39 042 1513
11 200 04 0.6 0.1 0.2 1.0 0.45 0.45 1259
12 200 06 04 01 0.2 1.0 0.54 045 995

OO Ot Wi~

Note: Our calculations for for the power Ppg5 to detect an effect with
significance level o = 0.05 agree with those from Table 3 of Luo, and with

our stochastic simulations, except for populations 11 and 12, which agree

23



with our simulations but do not agree with the results from Luo. Luo
obtained powers of 0.65, 0.60, which are similar to the power obtained when
¢ = 0. It may be that he has used ¢ = 0 for the power calculations for these

populations.

Figure 1 shows graphs of power versus linkage disequilibrium. Panels
correspond to a sample sizes n = 600, 1200, 2400, 4800, and QTL heritabilities
(or proportions of phenotypic variance explained) of h,gz = 0.01,0.05. Within
each panel, the solid lines are graphs of power versus linkage disequilibrium
for Bayes factors of 1/20,1/10,1/5,1,5,10,20. The lines, in order of increasing

power correspond to the Bayes factors in decreasing order.

Graphs of power versus disequilibrium for various values of marker and
QTL allele frequencies are shown in Figure 2. To facilitate comparisons across
the range of allele frequencies disequilibrium has been represented as D' =
D/ D4, which varies from 0 to 1, with 1 representing the maximum possible

linkage disequilibrium for the given values of marker and allele frequencies.

Note that the low allele frequencies per se don’t have a major effect on
the power obtained when disequilibrium reaches its maximum, although this
may happen for a lower D when ¢ is lower (Cf the middle panel of the top
row with n = 4800, p = 0.2). However, very low power occurs when there is
a poor match between marker and QTL frequencies (e.g. p = 0.01,¢ = 0.5
or p=0.5,¢ =0.01).
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Figure 1: Power versus disequilibrium for QTL with hé = 0.01,0.05.
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Figure 2: Effects of marker allele frequencies (p) and QTL allele fre-
quencies (¢) on power to detect linkage disequilibrium. Each panel
corresponds to a combination of p = 0.01,0.05,0.1,0.5 and n =
600, 1200, 4800, 9600, 19200, 38400. Within each panel, power curves for each
of ¢ = 0.01,0.05,0.1, 0.5 are shown by different line types. The curves shown
are for the power to detect a QTL versus D, with hé = 0.05, and a Bayes
factor of 20.

Application recommendations: The Bayes factor gives a well defined
measure of strength of evidence, independent of the experimental design or
sample size used. The optimal value to use depends on the costs of fur-
ther experimentation, and possible benefits. A Bayes factor of 20 or more
represents good evidence for an effect, however one needs to factor in the
prior odds. An effect which is a prior: unlikely needs a high Bayes factor
to obtain respectable posterior odds. A more formal cost-benefit analysis
is possible, in the Bayesian decision theory framework, see e.g. DEGROOT

(1970), LINDLEY (1985).

Use with genome scans. In a genome scan the prior odds for a gene to
be in the wvicinity of a particular marker, defined as the region closer to that
marker than any other, are proportional to the number of genes expected
and inversely proportional to the number of markers (Cf BALL 2001). In
a genome scan with many markers the prior probability would be small,
therefore a high Bayes factor would be required. KRUGLYAK (1999) suggests
that D = 0.1 may be obtainable for the human population, at distances

between QTL an marker of up to 3kb, corresponding to a map with 6kb
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Table 5: Sample sizes required for power of 0.9 of detection of linkage disequi-
librium between a bi-allelic QTL and a bi-allelic marker with given posterior
odds for linkage disequilibrium with D = 0.1, p = 0.5, ¢ = 0.5 in a genome
scan with 500 000 SNP markers. Prior probability per marker is assumed to
be 1/50000.

sample size
posterior odds Bayes factor h3 = 0.05 hg = 0.01

1/20 2500 5972 30640
1/5 10000 6008 32792
1 50000 6524 35397

3 250000 7031 37949

20 1000000 7465 40089

spacing and 500 000 markers.

For example, if it is desired to localise an effect to the nearest of 500 000
SNP markers and there were about 10 genes expected, the prior probability
per marker would be around 1/50000. To obtain respectable posterior odds

of say 20:1 in (16), we would require a Bayes factor of 1000 000.

Table 5 shows sample sizes required for localising QTL in a genome scan
with 500000 SNP markers, assuming there are 10 QTL. A sample size of
~ 40000 is needed for a power of 0.9 to obtain posterior odds of 20:1 for a
QTL explaining 1% of the phenotypic variance with D = 0.1 to be within
+3kb of a given marker. Note that, in relative terms, the sample sizes to ob-

tain the higher Bayes factors don’t increase much at the larger sample sizes.

Use with candidate genes. If a large number of ‘candidate’ genes was

being tested, at an initial screening stage of experimentation, one may be
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content with posterior odds of less than 1. In this case one would want
to be sure the effects of interest had a high probability (power) of being
accepted, while the genes not affecting the trait have a low probability. For
example suppose 50000 candidate genes were tested with a sample size of
n = 4800, and we are looking for QTL explaining 1% of the phenotypic
variance (h%, = 0.01). From Fig 1 with n = 4800, B = 1 we have a power of
0.5 provided D > 0.13, and a power of 0.001 provided D = 0. Thus with this
design we would, on average end up with 50 false positives and half of the
genes with D > 0.13. On the other hand requiring B = 20 would eliminate
80% of the genes with D > 0.13, which is hardly satisfactory. For QTL with
hé = 0.05, the situation is more favourable: with n = 4800 and D > 0.1
there is a 95% power to detect genes with D > 0.1 with a Bayes factor of 20,

with a rate of less than 1/1000 false positives.

Table 6 shows sample sizes required for selecting genes from a set of 50 000
candidate genes, assuming there are 10 true genes. A sample size of & 36 000
is needed for a power of 0.9 to obtain posterior odds of 20:1 for a gene ex-
plaining 1% of the genetic variance, with D = 0.1 to be within +3kb of a
given marker. As with Table 5, the sample sizes needed to obtain the higher

Bayes factors are not much higher in relative terms.
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Table 6: Sample sizes required for power of 0.9 of detection of linkage disequi-
librium between a bi-allelic QTL and a bi-allelic marker with given posterior
odds for linkage disequilibrium with D = 0.1, p = 0.5, ¢ = 0.5 in a set of
50 000 markers representing candidate genes. Prior probability per marker is
assumed to be 1/5000.

sample size
posterior odds Bayes factor h3 = 0.05 hg = 0.01

1/20 250 4826 26 808

1/5 1000 2288 29093

1 5000 2808 31658

3 25000 6322 34223

20 100000 6762 36 406
DISCUSSION

Detection of markers in linkage disequilibrium with a trait is a complex
statistical problem. Classical single marker test methods have not lead to
reliable SNPs in published data, and the need for more rigorous statistical
evidence for detection of SNPs has been noted. A major problem is with the
interpretation of p-values as evidence. The results of this paper confirm the
wide range in p-values required to obtain a given Bayes factor, as sample size

varies.

The results of Table 4 show that using a threshold of P = 0.05 does not
correspond to positive evidence for a real effect, and up to 13 times larger
sample sizes are needed to obtain good evidence (a Bayes factor of 20) with

power 0.9.

The results of Figure 1 show that good power is achieved with a sample

size of n = 2400, for a 5% QTL with D = 0.15, to detect linkage with a
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Bayes factor of 20. However at n = 4800 and D = 0.1 power is low even for

a Bayes factor of 1.

The results of Figure 2 show that power may be very low if low QTL
allele frequency is is not matched by a low marker frequency. In this case
the linkage disequilibrium is much lower than the maximum possible for the
given QTL allele frequency. This sensitivity of power to allele frequency
is one reason why plots of the LD test statistics in the neighbourhood of
a gene generally vary wildly, in a non-smooth fashion. To detect a gene,
particularly one with a low frequency allele, it is not only important to have
a marker close to the gene but also to have a marker with similar allele
frequency. For a randomly chosen marker in the vicinity of a gene it seems
that this would occur with low probability for a low frequency QTL allele.
This further increases the number of markers needed for adequate genome

coverage and/or the population size needed to detect such genes.

The results of Tables 5 and 6 show that it is feasible, albeit with large
sample sizes of the order of 7500, 40 000 to detect and locate QTL which
explain 5%, 1% or more of the genetic variance respectively; with a linkage
disequilibrium of D = 0.1, by testing sets of up to 50 000 candidate genes or
500000 SNP markers. For genome scans, it is possible to borrow strength
from neighbouring markers, justifying higher prior probabilities when esti-
mating the marginal probability for a set of markers in a larger region (Cf
BALL 2001). This can’t be pushed too far, however: because of the short-
range of usable linkage disequilibrium indicated in KRUGLYAK (1999), only a

small number of the 500 000 markers would be close enough to a given gene.
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An alternative, in view of the large sample sizes indicated for detecting
small QTL with the genome scan or brute force candidate gene approaches,
is a hybrid approach whereby candidate genes or genomic regions are pres-
elected e.g. from differential gene expression or QTL mapping studies. An-
other alternative is to find populations with a somewhat larger range of use-
able linkage disequilibrium, giving less precise information but with a lower

genotyping cost.

Various alternative experimental designs are possible, such as the trans-
mission disequilibrium test, which avoid potential spurious associations due
to population substructure (ALLISON 1997; LONG and LANGLEY 1999; SPIEL-
MAN and EWENS, 1998; BOEHNKE and LANGEFELD 1998). We do not con-
sider these directly but note that a transmission test can be viewed as a test
of association between transmission of an allele and a trait, and the power
calculations re-derived. We would expect a transmission test of equivalent
power (in the classical sense) to the designs considered here, would be ex-
pected to have a similar power to achieve a given Bayes factor, i.e. existing
comparisons between the power of these tests and those of association studies

would apply, however this is yet to be confirmed.

An alternative to considering single markers separately is to study hap-
lotypes. For example, if one is interested in a particular haplotype or class
of haplotypes from a subset of SNPs being associated with a higher level of
disease, compared with all other haplotypes from the subset, this can be con-
sidered a bi-allelic marker for which the methods of this paper apply. If more

than two haplotype classes are considered the equivalent power calculations
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would need to be derived. Use of p-values is problematic in this situation
because p-values are affected by considerations, such as which other haplo-
types or haplotype classes are tested. The Bayesian approach is well suited
to haplotypes—the Bayes factor or posterior probability does not depend on
such considerations. Of course if there was a very large number of combina-
tions or partitions of haplotypes the prior probability for a randomly chosen

haplotype would be low, and a high Bayes factor would be required.

The Bayes factor depends on the prior for the variable(s) being tested
(here marker effects). We have used a generic, or ‘default’ Bayes factor
which avoids this prior dependence, giving a generic result which can be
applied in the absence of further prior information. In specific situations
it may be possible to do better with prior information on the size of QTL
effects is available. For example, the variance due to a QTL can be no more
than the genetic variance of the trait, for which estimates are often available.
However, in our experience this amount of prior information is not enough

to make a major difference.

The approach used here, of determining the power to achieve a given
Bayes factor is a hybrid of Bayesian, and non-Bayesian (frequentist) ap-
proaches. We are studying the sampling distribution (frequentist) of the
Bayes factor (a Bayesian measure of evidence). This is appropriate because
we are interested in possible outcomes of future experiments, if there is an
association with certain parameter values. However once an experiment has
been carried out, in the Bayesian viewpoint, there is only one observed data

set, and the Bayes factor is a property of that dataset; we would not nor-
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mally consider the sampling variability of Bayes factors that might have been

obtained.

The problem with p-values remains whether one uses any of the many
forms of hypothesis tests: the t-test, F-test, x2-test, or likelihood ratio test.
One may wonder why the likelihood ratio test doesn’t solve the problem,
when the Bayes factor is essentially a likelihood ratio. The difference is in
how the unknown parameters are treated. In the non-Bayesian likelihood

ratio test one maximises over the unknown parameters

LR = fl(y‘ Al)’
fo(y \ 90)

where 01, éo are chosen to maximise their respective likelihood functions
fi(y | 61), fo(y | Bo). This strongly favours the alternative hypothesis, which
usually has one or more additional parameters to maximise over. To obtain
a hypothesis test, the likelihood ratio, LR, is compared to its sampling dis-
tribution under the null hypothesis. High values of the likelihood ratio are
interpreted as meaning the null hypothesis is rejected. As with any other hy-
pothesis test, there is no guarantee, however, that the alternative hypothesis,

is any more likely.

The problem with p-values remains whether one uses comparison-wise or
experiment-wise p-values, or p-values from a permutation test. A permuta-
tion test is just a non-parametric way of obtaining a p-value. Of course the
experiment-wise p-value usually corresponds to a much lower comparison-
wise p-value so represents stronger evidence. The interpretation of the p-

value, and what threshold to use remains a problem.
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Obtaining a Bayes factor of 20 may require much higher sample sizes, than
obtaining a p-value of 0.05, say. One may ask: why use Bayes factors if this
requires larger sample sizes and hence greater cost, if one has p = 0.05? This
is not a reflection on the relative efficiency of the methodologies, because the
Bayes factor of 20 represents stronger evidence than the p-value 0.05 which
may represent very weak evidence— “you (only) get what you pay for”. If
a much larger sample size is required for power to obtain the desired Bayes
factor this implies that the original experiment was under powered, and the
p-value corresponds to a small Bayes factor, i.e. very weak evidence, while

creating a misleading impression of evidence for an effect.
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Appendix 1. Derivation of modified values for EMS,, EMS,,.

First we calculate i, (8o then wo3. Values for £, 83 and other w;; values

are obtained similarly.

Taking expectations in equation (5),

po= E@

= E(y| AA)Pr(AA)+ E(y | Aa)Pr(Aa) + E(y | aa)Pr(aa) (22)
Substituting QTL genotype probabilities and values and simplifying gives

p = dxg+hx2q(1—q)—dx(1-gq)?

= (2¢—1)d+2¢(1—q)h. (23)
Taking expectations conditional on marker class Mm (i = 2)

pt B = E(y| Mm)
= E(y| Mm,AA)Pr(AA | Mm)+ E(y | Mm, Aa)Pr(Aa | Mm)

+E(y | Mm, AA)Pr(aa | Mm) (24)
The genotype conditional probabilities are given by:

Pr(AA| Mm) = Pr(A|M)Pr(A|m)=QR (25)

Pr(Aa| Mm) = Pr(A|M)Pr(a|m)+ Pr(A|m)Pr(a|M)=Q(1—-R)+(1—-Q)R

= Q+R-20R (26)

Pr(aa | Mm) = Pr(a|M)Pr(a|m)=(1-Q)(1— R) (27)
Noting that E(y | Mm, AA) = E(y | AA) etc, and substituting QTL geno-
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type conditional probabilities and values and solving for 3, we obtain

8, = [D(1—2p)]d + d[QDj- (1—2p)(1 —29)]h (28)
p(1—p)

which agrees with equation 3.2 of Luo.

Finally, taking expectations conditional on marker genotype class Mm

(i = 2) QTL genotype aa (j = 3) gives:
o+ P2+ wes = E(y | Mm, aa) = —d
Solving for w3 gives:

w3 = —d—p— P
D(1 —2p)d + [2D* + D(1 — 2p)(1 — 2¢)|h
p(1-p)
_[D( —2p) —2pg(1 — p)]d + [2D* + (1 — 2p)(1 — 29) D + 2pg(1 — p)(1 — g)]h
p(1—p)

= —d—(2¢—1)d—2¢q(1 - q)h—

(29)

This differs from the expression of Luo (p 207) by a factor —1.

Luo (Eq 3.1-3.3 and Appendix 1), following SEARLE (1987) and KNOTT
(1994) gives expressions for §;, w;;, and expressions for EMS,, EMS,,, in
terms of 3;, wi; and f, fi;, where f;, is the relative proportions of the ith
marker genotype and f;; the proportions of the ith marker genotype/jth

QTL genotype combination.
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The formula given for EM S, is

1 Gm Gq Gm 1 Gq
EMS, = e ZZfijnw?j > =D i+ (n— 1)fij)wi2j+
n—0Um |;= =1 =1 fi j=1

20 —1) D fijfiewijwin

j<k<G,

} + o? (30)

where G, = 3, is the number of marker genotypes and GG, = 3 is the number

of QTL genotypes.

Use of the formulae for EM S, and EM S, from Luo gave results which
did not agree with stochastic simulations. Our calculations of 3; and wj;
agreed with those of Luo except for the equation for we3, above, which was
out by a factor of -1. Using the corrected value for wos still did not give
results that agreed with simulations. The values of EMS,, did agree with
simulations, suggesting that there is a further error in EMS,. Rather than
re-derive the expression for EM S, we take advantage of the fact that once
one of EM S, or EMS,, is known, the other can be obtained by subtraction
using the relationships between EMS,,, EM S, and total sums of squares viz

(Cf Table 2):-
SST =88y + 5SSy = (G —1)MSy, + (n — G ) M S,
Taking expectations
V,=E(SSt) = (Gm — 1)EM S, + (n — Gp) EMS,,

where V), is the total, or phenotypic variance. Solving for EM .S, gives

EMS, = [(n— 1)V, — (n — Gy) EMS,). (31)

Gn—1
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Finally, we need an expression for V. Substituting from equation (5) and

taking variances gives:

Vo

var(y) = var(pu + B; + wij + eji)
var(u + B; + wij) + var(esjx)
E(ﬂz + wij)Q + 0'2

Gm Gq

SN fi(Bi + wiy)® + o (32)

i=1j=1
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CHANGELOG

Expanded introduction with more references and applications of LD.
References to Roses, Risch discussing potential of LD and Altshuler et
al and Terwilliger and Weiss showing unreliability in published data,

and review paper of Nielsen and Zaykin of methods to 2001.

Introduction to Bayes factors, and the probability distributions in-

volved.

Paragraph on Bayes factors for vague priors rewritten, with clearer

notation.

More detail on how the Bayes factor formula of Spiegelhalter applies to
the problem with an approximate expression in terms of the problem

parameters.

Discussion of the ‘random model of QTL effects’ (mentioned in Luo)

which caused confusion has been removed.

New table showing comparison of sample sizes for the 12 example popu-
lations in Luo, the equivalent Bayes factors and the sample sizes needed

to obtain a Bayes factor of 20 with power 0.9.

Graphs of power versus linkage disequilibrium reduced to a single 4x2
trellis graphics array with n=600,1200,2400,4800 and h2=0.01,0.05.
(Figure 1.)
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New Figure 2 showing effects of differing marker and QTL allele fre-
quencies, for the power to detect a QTL with h,é = 0.05 and Bayes
factor 20.

Expanded discussion including various forms of hypothesis test, x?2,
likelihood ratio with comparison-wise, experiment-wise or permutation
test thresholds, and why the problems with p-values are common to all

of these forms.

The discussion closes with answer to the question posed by Sarah Otto:
“Why use Bayes factors if one already has p=0.05, and it requires more

data and cost?”

New appendix with derivations of wy3, FMS, and EMS,, to correct

the power calculation from Luo.
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