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1 Introduction

Limma is a package for the analysis of gene expression microarray data, especially the use of lin-
ear models for analysing designed experiments and the assessment of differential expression.
Limma provides the ability to analyse comparisons between many RNA targets simultane-
ously. It has features which make the analyses stable even for experiments with small number
of arrays—this is achieved by borrowing information across genes. The normalization and
exploratory data analysis functions are for two-colour spotted microarrays. The linear model
and differential expression functions apply to all microarrays including Affymetrix and other
single-channel microarray experiments.

This guide gives a tutorial-style introduction to the main limma features but does not
describe every feature of the package. A full description of the package is given by the indi-
vidual function help documents available from the R online help system. To access the online
help, type help(package=limma) at the R prompt or else start the html help system using
help.start() or the Windows drop-down help menu.

The Bioconductor package marray provides alternative functions for reading and normal-
izing spotted microarray data. The marray package provides flexible location and scale nor-
malization routines for log-ratios from two-color arrays. The limma package overlaps with
marray in functionality but is based on a more general separation between within-array and
between-array normalization. If you are using limma in conjunction with marray, see Section
10. The Bioconductor package affy provides functions for reading and normalizing Affymetrix
microarray data. If you are using the affy package, see Section 7.2 and the relevant case
studies.

This guide describes limma as a command-driven package. Packages limmaGUI and affylmGUI
are also available which provides graphical user interfaces to the most commonly used func-
tions in limma (Wettenhall and Smyth, 2004). Both packages are available from Bioconductor
or from http://bioinf.wehi.edu.au/limmaGUI. The package limmaGUI is for use with two-
color data while afflmGUI is for Affymetrix data.

This tutorial was prepared using R Version 2.0 for Windows and limma version 1.8.6. Help
with limma is available by sending questions or problems to the Bioconductor mailing list
bioconductor@stat.math.ethz.ch.

2 Installation

Limma is a package for the R computing environment and it is assumed that you have already
installed R. See the R project at http://www.r-project.org.

Installing from CRAN. Limma is available as a contributed package from the R Project
CRAN site. This is the recommended repository from which to obtain limma. If you are
using R on a system with a suitable internet connection and with installation privileges on
your computer, you should be able to install it via
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> install.packages("limma")

at the R prompt from an internet-connected computer. If you are using Windows, use the
drop-down menu Packages � Install package(s) from CRAN ....

Installing from WEHI. The limma home page is http://bioinf.wehi.edu.au/limma. The
latest version of the package is always available from this page, sometimes a few days ahead
of the CRAN site. Unlike CRAN, this page supports only the latest release of R (not the
developmental version) and does not provide a Mac package build. You should be able to
install limma from this page using

> install.packages("limma",contriburl="http://bioinf.wehi.edu.au/limma")

at the R prompt.

Installing from Bioconductor. Limma is available as part of the Bioconductor project at
http://www.bioconductor.org. Bioconductor works on a 6-monthly official release cycle,
lagging each major R release by a few weeks. This means that Bioconductor software is
updated only once every six months, unless you are using the developmental version of R.
Updates of limma between the Bioconductor official releases should be obtained from one of
the above two sites.

Change-log. Limma is updated frequently, often a couple of times a week. The change-log
can be viewed at http://bioinf.wehi.edu.au/limma/changelog.txt. It can also be viewed
from the R prompt. To see the most recent 20 lines type:

> changeLog(n=20)

3 A Few Preliminaries on R

R is a program for statistical computing. It is a command-driven language meaning that you
have to type commands into it rather than pointing and clicking using a mouse. A good way
to get started is to type

> help.start()

at the R prompt or, if you’re using R for Windows, to follow the drop-down menu items Help
� Html help. Following the links Packages � limma from the html help page will lead you to
the contents page of help topics for functions in limma.

Before you can use any limma commands you have to load the package by typing

> library(limma)

at the R prompt. You can get help on any function in any loaded package by typing ? and
the function name at the R prompt, for example

> ?read.maimages

for detailed help on the read.maimages function. Anything that you create in R is an “object”.
Objects might include data sets, variables, functions, anything at all. For example
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> x <- 2

will create a variable x and will assign it the value 2. At any stage of your R session you can
type

> objects()

to get a list of all the objects you have created. You see show the contents of any object by
typing the name of the object at the prompt, for example either of the following commands
will print out the contents of x:

> show(x)

> x

We hope that you can use limma without having to spend a lot of time learning about the
R language itself but a little knowledge in this direction will be very helpful, especially when
you want to do something not explicitly provided for in limma or in the other Bioconductor
packages. For more details about the R language see An Introduction to R which is available
from the online help. For more background on using R for statistical analyses see Dalgaard
(2002).

4 Quick Start

This is a quick overview of what an analysis might look like. The first example assumes four
replicate two-color arrays, the second and fourth of which are dye-swapped. We assume that
the images have been analyzed using GenePix to produce a .gpr file for each array and that
a targets file targets.txt has been prepared with a column containing the names of the .gpr

files.

> library(limma)

> targets <- readTargets("targets.txt")

Set up a filter so that any spot with a flag of −99 or less gets zero weight.

> f <- function(x) as.numeric(x$Flags > -99)

The following command implements a type of adaptive background correction. This is optional
but recommended for GenePix data.

> RG <- backgroundCorrect(RG, method="normexp", offset=50)

Read in the data.

> RG <- read.maimages(targets$FileName, source="genepix", wt.fun=f)

Set the printer layout information, number of print tips etc.

> RG$printer <- getLayout(RG$genes)

Print-tip loess normalization:
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> MA <- normalizeWithinArrays(RG)

Estimate the fold changes and standard errors by fitting a linear model for each gene. The
design matrix indicates which arrays are dye-swaps.

> fit <- lmFit(MA, design=c(-1,1,-1,1))

Apply empirical Bayesian smoothing to the standard errors.

> fit <- eBayes(fit)

Show statistics for the top 10 genes.

> topTable(fit)

The second example assumes Affymetrix arrays hybridized with either wild-type (wt) or
mutant (mt) RNA. There should be three or more arrays in total to ensure some replication.
The targets file is now assumed to have another column Genotype indicating which RNA source
was hybridized on each array.

> library(affy)

> library(limma)

> targets <- readTargets("targets.txt")

Read and pre-process the Affymetrix CEL file data.

> ab <- ReadAffy(filenames=targets$FileName)

> eset <- rma(ab)

Form an appropriate design matrix for the two RNA sources and fit linear models. The design
matrix has two columns. The first represents log-expression in the wild-type and the second
represents the log-ratio between the mutant and wild-type samples. See Section 13 for more
details on the design matrix.

design <- cbind(WT=1, MUvsWT=targets$Genotype=="mu")

fit <- lmFit(eset, design)

fit <- eBayes(fit)

topTable(fit, coef="MUvsWT")

5 Reading Data into Limma

This chapter is for two-color arrays. If you are using Affymetrix arrays, you should use the affy
or affyPLM packages to read and normalize the data. If you have single channel arrays others
than Affymetrix, you will need to the read the intensity data into your R session yourself using
the basic R read functions such as read.table. You will need to create a matrix containing
the log-intensities with rows for probes and columns are arrays.
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5.1 Recommended Files

We assume that an experiment has been conducted with one or more microarrays, all printed
with the same library of probes. Each array has been scanned to produce a TIFF image. The
TIFF images have then been processed using an image analysis program such a ArrayVision,
ImaGene, GenePix, QuantArray or SPOT to acquire the red and green foreground and back-
ground intensities for each spot. The spot intensities have then been exported from the image
analysis program into a series of text files. There should be one file for each array or, in the
case of Imagene, two files for each array.

You will need to have the image analysis output files. In most cases these files will include
the IDs and names of the probes and possibly other annotation information. A few image
analysis programs, for example SPOT, do not write the probe IDs into the output files. In
this case you will also need a genelist file which describes the probes. It most cases it is also
desirable to have a targets file which describes which RNA sample was hybridized to each
channel of each array. A further optional file is the spot types file which identifies special
probes such as control spots.

5.2 The Targets Frame

The first step in preparing data for input into limma is usually to create a targets file which
lists the RNA target hybridized to each channel of each array. It is normally in tab-delimited
text format and should contain a row for each microarray in the experiment. The file can have
any name but the default is Targets.txt. If it has the default name, it can be read into the
R session using

> targets <- readTargets()

Once read into R, it becomes the targets frame.
The targets frame normally contains a FileName column, giving the name of the image-

analysis output file, a Cy3 column giving the RNA type labelled with Cy3 dye for that slide
and a Cy5 column giving the RNA type labelled with Cy5 dye for that slide. Other columns
are optional. The targets file can be prepared using any text editor but spreadsheet programs
such as Microsoft Excel are convenient. The targets file for the Swirl case study includes
optional SideNumber andd Date columns:
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The targets file for the ApoAI case study includes a Name column which can be used to
associate labels with the different arrays for plots and output:

For ImaGene files, the FileName column is split into a FileNameCy3 column and a File-
NameCy5 because ImaGene stores red and green intensities in separate files. This is a short
example:

The targets file below was used to analyse the Scorecard spike-in controls for a particular
experiment. Spike-in controls often need to be analyzed separately from other probes because
there are only two different spike-in RNA samples, “Reference” and “Test”, whereas other
probes may respond to any arbitrary number of RNA targets depending on the experiment.
This means that, in a multi-array experiment, the spike-in control spots may not respond to
the same design matrix as the other probes.

8



5.3 Reading in Intensity Data

Let files be a character vector containing the names of the image analysis output files. The
foreground and background intensities can be read into an RGList object using a command of
the form

RG <- read.maimages(files, source="<imageanalysisprogram>", path="<directory>")

where <imageanalysisprogram> is the name of the image analysis program and <directory>

is the full path of the directory containing the files. If the files are in the current R working
directory then the argument path can be omitted; see the help entry for setwd for how to set
the current working directory. The file names are usually read from the Targets File. For
example, the Targets File Targets.txt is in the current working directory together with the
SPOT output files, then one might use

> targets <- readTargets()

> RG <- read.maimages(targets$FileName, source="spot")

If the files are GenePix output files then they might be read using

> RG <- read.maimages(targets$FileName, source="genepix")

given an appropriate Targets File. Consult the help entry for read.maimages to see which other
image analysis programs are supported. Files are assumed by default to be tab-delimited. If
the files use a different separator this may be specified using the sep= argument. For example
if the Genepix files were comma-separated (csv) then the read command would be

RG <- read.maimages(files, source="genepix", sep=",")

Reading data from ImaGene software is a little different to that of other image analysis
programs because the red and green intensities are stored in separate files. This means that the
targets frame should include two filename columns called, say, FileNameCy3 and FileNameCy5,
giving the names of the files containing the green and red intensities respectively. An example
is given in Section 5.2. Typical code with ImaGene data might be
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> targets <- readTargets()

> files <- targets[,c("FileNameCy3","FileNameCy5")]

> RG <- read.maimages(files, source="imagene")

For ImaGene data, the files argument to read.maimages() is expected to be a 2-column
matrix of filenames rather than a vector.

What should you do if your image analysis program is not currently supported by limma?
If your output files are of a standard format, you can supply the column names corresponding
to the intensities yourself. For example,

> RG <- read.maimages(files,

columns=list(Rf="F635 Mean",Gf="F532 Mean",Rb="B635 Median",Gb="B532 Median"))

is exactly equivalent to the earlier command with source="genepix". “Standard format”means
here that there is a unique column name identifying each column of interest and that there
are no lines in the file following the last line of data. Header information at the start of the
file is ok.

It is a good idea to look at your data to check that it has been read in correctly. Type

> show(RG)

to see a print out the first few lines of data. Also try

> summary(RG$R)

to see a five-number summary of the red intensities for each array, and so on.
It is possible to read the data in several steps. If RG1 and RG2 are two data sets corre-

sponding to different sets of arrays then

> RG <- cbind(RG1, RG2)

will combine them into one large data set. Data sets can also be subsetted. For example
RG[,1] is the data for the first array while RG[1:100,] is the data on the first 100 genes.

5.4 Spot Quality Weights

It is desirable to use the image analysis to compute a weight for each spot between 0 and
1 which indicates the reliability of the acquired intensities at that spot. For example, if the
SPOT image analysis program is used and the size of an ideal perfectly circular spot is known
to be 100 pixels, then one might use

> RG <- read.maimages(files,source="spot",wt.fun=wtarea(100))

The function wtarea(100) gives full weight to spots with area 100 pixels and down-weights
smaller and larger spots. Spots which have zero area or are more than twice the ideal size are
given zero weight. This will create a component called weights in the RG list. The weights
will be used automatically by functions such as normalizeWithinArrays which operate on the
RG-list. With GenePix data
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> RG <- read.maimages(files,source="genepix",wt.fun=wtflags(0.1))

will give weight 0.1 to any spot which receives a negative flag from the GenePix program.
The appropriate way to computing spot quality weights depends on the image analysis

program that you are using. Consult the help entry QualityWeights to see what quality weight
functions are available. The wt.fun argument is very flexible and allows you to construct your
own weights. The wt.fun argument can be any function which takes a data set as argument
and computes the desired weights. For example, if you wish to give zero weight to all Genepix
flags less than -50 you could use

> myfun <- function(x) as.numeric(x$Flags > -50.5)

> RG <- read.maimages(files, source="genepix", wt.fun=myfun)

The wt.fun facility can be used to compute weights based on any number of columns in the
image analysis files. For example, some researchers like to filter out spots if the foreground
mean and median from GenePix for a given spot differ by more than a certain threshold, say
50. This could be achieved by

> myfun <- function(x, threshold=50) {

+ okred <- abs(x[,"F635 Median"]-x[,"F635 Mean"]) < threshold

+ okgreen <- abs(x[,"F532 Median"]-x[,"F532 Mean"]) < threshold

+ as.numeric(okgreen & okred)

+}

> RG <- read.maimages(files, source="genepix", wt.fun=myfun)

Then all the “bad” spots will get weight zero which, in limma, is equivalent to flagging them
out. The definition of myfun here could be replaced with any other code to compute weights
using the columns in the GenePix output files.

5.5 Reading the Gene List

In most cases the RGList read by read.maimages() will contain a component RG$genes con-
taining the probe IDs and other probe-specific annotation. In some cases the genes component
will not be set because there is no probe information in the image analysis output files. An
example is output from the SPOT program. In such cases, the probe information needs to be
read separately.

If the arrays have been scanned with an Axon scanner, then the gene names will be available
in a GenePix Array List (GAL) file. If the GAL file has extension “gal” and is in the current
working directory, then it may be read into a data.frame by

> RG$genes <- readGAL()

Non-Genepix gene lists can be read into R using the function read.table from R base.
Once the gene array list is available, the print layout of the arrays can be extracted from

it by

> RG$printer <- getLayout(RG$genes)
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This will set the number of pins, or print-tips, using during the printing of the arrays. This
determines the number of what are often called grids or meta rows and columns on the arrays.
For ImaGene data, the print layout is already set automatically by read.maimages because this
information, called “field dimensions” by ImaGene, is stored as part of the ImaGene output
files.

5.6 The Spot Types File

The Spot Types file (STF) is another optional tab-delimited text file which allows you to
identify different types of spots from the gene list. The STF is used to set the control status of
each spot on the arrays so that plots may highlight different types of spots in an appropriate
way. It is typically used to distinguish control spots from those corresponding to genes of
interest and to distinguish positive from negative controls, ratio from calibration controls and
so on. The STF should have a SpotType column giving the names of the different spot-types.
One or more other columns should have the same names as columns in the gene list and should
contain patterns or regular expressions sufficient to identify the spot-type. Any other columns
are assumed to contain plotting attributes, such as colors or symbols, to be associated with
the spot-types. This is one row for each spot-type to be distinguished.

The STF uses simplified regular expressions to match patterns. For example, AA* means
any string starting with AA, *AA means any code ending with AA, AA means exactly these two
letters, *AA* means any string containing AA, AA. means AA followed by exactly one other
character and AA\. means exactly AA followed by a period and no other characters. For those
familiar with regular expressions, any other regular expressions are allowed but the codes ^

for beginning of string and $ for end of string should be excluded. Note that the patterns are
matched sequentially from first to last, so more general patterns should be included first. The
first row should specify the default spot-type and should have pattern * for all the pattern-
matching columns.

Here is a short STF appropriate for the ApoAI data:

In this example, the columns ID and Name are found in the gene-list and contain patterns
to match. The asterisks are wildcards which can represent anything. Be careful to use upper
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or lower case as appropriate and don’t insert any extra spaces. The remaining column gives
colors to be associated with the different types of points.

Here is a STF below appropriate for arrays with Lucidea Universal ScoreCard control
spots.

If the STF has default name SpotTypes.txt then it can be read using

> spottypes <- readSpotTypes()

It is typically used as an argument to the controlStatus() function to set the status of each
spot on the array, for example

> RG$genes$Status <- controlStatus(spottypes, RG)

6 Data Exploration

It is advisable to display your data in various ways as a quality check and to check for
unexpected effects. We recommend an imageplot of the raw log-ratios and an MA-plot of
the raw data for each array as a minimum routine displays. See the Swirl case study for
some examples. The functions imageplot3by2 and plotMA3by2 can be used to automate the
production of plots for all arrays in an experiment.

The following is an example MA-Plot for an Incyte array with various spike-in and other
controls. (Data courtesy of Rebecca McCracken and Steve Gerondakis, Walter and Eliza Hall
Institute of Medical Research.) The plot was produced using

> spottypes <- readSpotTypes()

> RG$genes$Status <- controlStatus(spottypes, RG)

> plotMA(RG)
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The array includes spike-in ratio controls which are 3-fold, 10-fold and 25-fold up and down
regulated, as well an non-differentially expressed sensitivity controls and negative controls.

7 Normalization

Limma implements a range of normalization methods for spotted microarrays. Smyth and
Speed (2003) describe some of the mostly commonly used methods. The methods may be
broadly classified into methods which normalize the M-values for each array separately (within-
array normalization) and methods which normalize intensities or log-ratios to be comparable
across arrays (between-array normalization). This section discusses mainly within-array nor-
malization. Between-array normalization is discussed further in Section 24.

Print-tip loess normalization (Yang et al, 2001) is the default normalization method and
can be performed by

> MA <- normalizeWithinArrays(RG)

There are some notable cases in which this is not appropriate. For example, Agilent arrays
do not have print-tip groups, so one should use global loess normalization instead:

> MA <- normalizeWithinArrays(RG, method="loess")

Print-tip loess is also unreliable for small arrays with less than, say, 150 spots per print-tip
group. Arrays with are larger than this may behave as small arrays if the number of spots
with non-missing M-values is small for one or more of the print-tip groups. In these cases one
should either use global "loess" normalization or else use robust spline normalization

> MA <- normalizeWithinArrays(RG, method="robustspline")
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which is an empirical Bayes compromise between print-tip and global loess normalization,
with 5-parameter regression splines used in place of the loess curves.

Loess normalization assumes that the bulk of the probes on the array are not differentially
expressed. It doesn’t assume that that there are equal numbers of up and down regulated
genes or that differential expression is symmetric about zero, provided that the loess fit is
implemented in a robust fashion, but it is necessary that there be a substantial body of probes
which do not change expression levels. This assumption can be suspect for boutique arrays
where the total number of unique genes on the array is small, say less than 150, particularly
if these genes have been selected for being specifically expressed in one of the RNA sources.
In such a situation, the best strategy is to include on the arrays a series of non-differentially
expressed control spots, such as a titration series of whole-library-pool spots, and to use the
up-weighting method discussed below. In the absence of the such control spots, normalization
of boutique arrays requires specialist advice.

Any spot quality weights found in RG will be used in the normalization by default. This
means for example that spots with zero weight (flagged out) will not influence the normal-
ization of other spots. The use of spot quality weights will not however result in any spots
being removed from the data object. Even spots with zero weight will be normalized and will
appear in the output object, such spots will simply not have any influence on the other spots.
If you do not wish the spot quality weights to be used in the normalization, their use can be
over-ridden using

> MA <- normalizeWithinArrays(RG, weights=NULL)

The output object MA will still contain any spot quality weights found in RG, but these weights
will not be used in the normalization step.

It is often useful to make use of control spots to assist the normalization process. For exam-
ple, if the arrays contain a series of spots which are known in advance to be non-differentially
expressed, these spots can be given more weight in the normalization process. Spots which
are known in advance to be differentially expressed can be down-weighted. Suppose for exam-
ple that the controlStatus() has been used to identify spike-in spots which are differentially
expressed and a titration series of whole-library-pool spots which should not be differentially
expressed. Then one might use

> w <- modifyWeights(RG$weights, RG$genes$Status, c("spikein","titration"), c(0,2))

> MA <- normalizeWithinArrays(RG, weights=w)

to give zero weight to the spike-in spots and double weight to the titration spots. The idea of
up-weighting the titration spots is in the same spirit as the composite normalization method
proposed by Yang et al (2002) but is more flexible and generally applicable. The above code
assumes that RG already contains spot quality weights. If not, one could use

> w <- modifyWeights(array(1,dim(RG)), RG$genes$Status, c("spikein","titration"), c(0,2))

> MA <- normalizeWithinArrays(RG, weights=w)

instead.
Limma contains some more sophisticated normalization methods. In particular, some

between-array normalization methods are discussed in Section 24 of this guide.
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8 Background Correction

The default background correction action is to subtract the background intensity from the
foreground intensity for each spot. If the RGList object has not already been background
corrected, then normalizeWithinArrays will do this by default. Hence

> MA <- normalizeWithinArrays(RG)

is equivalent to

> RGb <- backgroundCorrect(RG, method="subtract")

> MA <- normalizeWithinArrays(RGb)

However there are many other background correction options which may be preferable in
certain situations.

For the purpose of assessing differential expression, we often find

> RG <- backgroundCorrect(RG, method="normexp", offset=50)

to be preferable to the simple background subtraction with most image analysis programs.
This method adjusts the foreground adaptively for the background intensities and results in
strictly positive adjusted intensities, i.e., negative or zero corrected intensities are avoided.
The use of an offset damps the variation of the log-ratios for very low intensities spots towards
zero.

To illustrate some differences between the different background correction methods we
consider one cDNA array which was self-self hybridized, i.e., the same RNA source was hy-
bridized to both channels. For this array there is no actual differential expression. The array
was printed with a human 10.5k library and hybridized with Jurkatt RNA on both channels.
(Data courtesy Andrew Holloway and Dileepa Diyagama, Peter MacCallum Cancer Centre,
Melbourne.) The array included a selection of control spots which are highlighted on the
plots. Of particular interest are the spike-in ratio controls which should show up and down
fold changes of 3 and 10. The first plot displays data acquired with GenePix software and
background corrected by subtracting the median local background, which is the default with
GenePix data. The plot shows the typical wedge shape with fanning of the M-values at low
intensities. The range of observed M-values dominates the spike-in ratio controls. The are
also 1148 spots not shown on the plot because the background corrected intensities were zero
or negative.
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The second plot shows the same array background corrected with method="normexp" and
offset=50. The spike-in ratio controls now standout clearly from the range of the M-values.
All spots on the array are shown on the plot because there are now no missing M-values.

The third plot shows the same array quantified with SPOT software and with “morph” back-
ground subtracted. This background estimator produces a similar effect to that with normexp.
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The effect of using “morph” background or using method="normexp" with an offset is to stabi-
lize the variability of the M-values as a function of intensity. The empirical Bayes methods
implemented in the limma package for assessing differential expression will yield most benefit
when the variabilities are as homogenous as possible between genes. This can best be achieved
by reducing the dependence of variability on intensity as far as possible.

9 Linear Models

9.1 Introduction

The package limma uses an approach called linear models to analyse designed microarray
experiments. This approach allows very general experiments to be analysed just as easily as
a simple replicated experiment. The approach is outlined in Smyth (2004) and Yang and
Speed (2003). The approach requires one or two matrices to be specified. The first is the
design matrix which indicates in effect which RNA samples have been applied to each array.
The second is the contrast matrix which specifies which comparisons you would like to make
between the RNA samples. For very simple experiments, you may not need to specify the
contrast matrix.

The philosophy of the approach is as follows. You have to start by fitting a linear model
to your data which fully models the systematic part of your data. The model is specified by
the design matrix. Each row of the design matrix corresponds to an array in your experiment
and each column corresponds to a coefficient which is used to describe the RNA sources in
your experiment. With Affymetrix or single-channel data, or with two-color with a common
reference, you will need as many coefficients as you have distinct RNA sources, no more
and no less. With direct-design two-color data you will need one fewer coefficient than you
have distinct RNA sources, unless you wish to estimate a dye-effect for each gene, in which
case the number of RNA sources and the number of coefficients will be the same. Any set
of independent coefficients will do, providing they describe all your treatments. The main
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purpose of this step is to estimate the variability in the data, hence the systematic part needs
to modelled so it can be distinguished from random variation.

In practice the requirement to have exactly as many coefficients as RNA sources is too
restrictive in terms of questions you might want to answer. You might be interested in more
or fewer comparisons between the RNA source. Hence the contrasts step is provided so that
you can take the initial coefficients and compare them in as many ways as you want to answer
any questions you might have, regardless of how many or how few these might be.

If you have data from Affymetrix experiments, from single-channel spotted microarrays
or from spotted microarrays using a common reference, then linear modeling is the same as
ordinary analysis of variance or multiple regression except that a model is fitted for every
gene. With data of this type you can create design matrices as one would do for ordinary
modeling with univariate data. If you have data from spotted microarrays using a direct
design, i.e., a connected design with no common reference, then the linear modeling approach
is very powerful but the creation of the design matrix may require more statistical knowledge.

For statistical analysis and assessing differential expression, limma uses an empirical Bayes
method to moderate the standard errors of the estimated log-fold changes. This results in
more stable inference and improved power, especially for experiments with small numbers
of arrays (Smyth, 2004). For arrays with within-array replicate spots, limma uses a pooled
correlation method to make full use of the duplicate spots (Smyth et al, 2003).

9.2 Affymetrix and Other Single-Channel Designs

Affymetrix data will usually be normalized using the affy package. We will assume here
that the data is available as an exprSet object called eset. Such an object will have an
slot containing the log-expression values for each gene on each array which can be extracted
using exprs(eset). Affymetrix and other single-channel microarray data may be analysed
very much like ordinary linear models or anova models. The difference with microarray data
is that it is almost always necessary to extract particular contrasts of interest and so the
standard parametrizations provided for factors in R are not usually adequate.

There are many ways to approach the analysis of a complex experiment in limma. A
straightforward strategy is to set up the simplest possible design matrix and then to extract
from the fit the contrasts of interest.

Suppose that there are three RNA sources to be compared. Suppose that the first three
arrays are hybridized with RNA1, the next two with RNA2 and the next three with RNA3.
Suppose that all pair-wise comparisons between the RNA sources are of interest. We assume
that the data has been normalized and stored in an exprSet object, for example by

> data <- ReadAffy()

> eset <- rma(data)

An appropriate design matrix can be created and a linear model fitted using

> design <- model.matrix(~ -1+factor(c(1,1,1,2,2,3,3,3)))

> colnames(design) <- c("group1", "group2", "group3")

> fit <- lmFit(eset, design)
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To make all pair-wise comparisons between the three groups the appropriate contrast matrix
can be created by

> contrast.matrix <- makeContrasts(group2-group1, group3-group2, group3-group1, levels=design)

> fit2 <- contrasts.fit(fit, contrast.matrix)

> fit2 <- eBayes(fit2)

A list of top genes differential expressed in group2 versus group1 can be obtained from

> topTable(fit2, coef=1, adjust="fdr")

The outcome of each hypothesis test can be assigned using

> results <- decideTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison can be obtained
from

> vennDiagram(results)

9.3 Common Reference Designs

Now consider two-color microarray experiments in which a common reference has been used
on all the arrays. Such experiments can be analysed very similarly to Affymetrix experiments
except that allowance must be made for dye-swaps. The simplest method is to setup the design
matrix using the modelMatrix() function and the targets file. As an example, we consider part
of an experiment conducted by Joëlle Michaud, Catherine Carmichael and Dr Hamish Scott at
the Walter and Eliza Hall Institute to compare the effects of transcription factors in a human
cell line. The targets file is as follows:

> targets <- readTargets("runxtargets.txt")

> targets

SlideNumber Cy3 Cy5

1 2144 EGFP AML1

2 2145 EGFP AML1

3 2146 AML1 EGFP

4 2147 EGFP AML1.CBFb

5 2148 EGFP AML1.CBFb

6 2149 AML1.CBFb EGFP

7 2158 EGFP CBFb

8 2159 CBFb EGFP

9 2160 EGFP AML1.CBFb

10 2161 AML1.CBFb EGFP

11 2162 EGFP AML1.CBFb

12 2163 AML1.CBFb EGFP

13 2166 EGFP CBFb

14 2167 CBFb EGFP

In the experiment, green fluorescent protein (EGFP) has been used as a common reference.
An adenovirus system was used to transport various transcription factors into the nuclei of
HeLa cells. Here we consider the transcription factors AML1, CBFbeta or both. A simple
design matrix was formed and a linear model fit:
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> design <- modelMatrix(targets,ref="EGFP")

> design

AML1 AML1.CBFb CBFb

1 1 0 0

2 1 0 0

3 -1 0 0

4 0 1 0

5 0 1 0

6 0 -1 0

7 0 0 1

8 0 0 -1

9 0 1 0

10 0 -1 0

11 0 1 0

12 0 -1 0

13 0 0 1

14 0 0 -1

> fit <- lmFit(MA, design)

It is of interest to compare each of the transcription factors to EGFP and also to compare
the combination transcription factor with AML1 and CBFb individually. An appropriate
contrast matrix was formed as follows:

> contrast.matrix <- makeContrasts(AML1,CBFb,AML1.CBFb,AML1.CBFb-AML1,AML1.CBFb-CBFb,

+ levels=design)

> contrast.matrix

AML1 CBFb AML1.CBFb AML1.CBFb - AML1 AML1.CBFb - CBFb

AML1 1 0 0 -1 0

AML1.CBFb 0 0 1 1 1

CBFb 0 1 0 0 -1

The linear model fit can now be expanded and empirical Bayes statistics computed:

> fit2 <- contrasts.fit(fit, contrasts.matrix)

> fit2 <- eBayes(fit2)

9.4 Direct Two-Color Designs

Two-colour designs without a common reference require the most statistical knowledge to
choose the appropriate design matrix. A direct design is one in which there is no single
RNA source which is hybridized to every array. As an example, we consider an experiment
conducted by Dr Mireille Lahoud at the Walter and Eliza Hall Institute to compare gene
expression in three different populations of dendritric cells (DC).
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This experiment involved six cDNA microarrays in three dye-swap pairs, with each pair used
to compare two DC types. The design is shown diagrammatically above. The targets file was
as follows:

> targets

SlideNumber FileName Cy3 Cy5

1 12 ml12med.spot CD4 CD8

2 13 ml13med.spot CD8 CD4

3 14 ml14med.spot DN CD8

4 15 ml15med.spot CD8 DN

5 16 ml16med.spot CD4 DN

6 17 ml17med.spot DN CD4

There are many valid choices for a design matrix for such an experiment and no single
correct choice. We chose to setup the design matrix as follows:

> design <- cbind("CD8-CD4"=c(1,-1,1,-1,0,0),"DN-CD4"=c(0,0,-1,1,1,-1))

> rownames(design) <- removeExt(targets$FileName)

> design

CD8-CD4 DN-CD4

ml12med 1 0

ml13med -1 0

ml14med 1 -1

ml15med -1 1

ml16med 0 1

ml17med 0 -1

In this design matrix, the CD8 and DN populations have been compared back to the CD4
population. The coefficients estimated by the linear model will correspond to the log-ratios of
CD8 vs CD4 (first column) and DN vs CD4 (second column). After appropriate normalization
of the expression data, a linear model was fit using

> fit <- lmFit(MA, design, ndups=2)

The use of ndups is to specify that the arrays contained duplicates of each gene, see Section 22.
The linear model can now be interrogated to answer any questions of interest. For this

experiment it was of interest to make all pairwise comparisons between the three DC popula-
tions. This was accomplished using the contrast matrix
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> contrast.matrix <- cbind("CD8-CD4"=c(1,0),"DN-CD4"=c(0,1),"CD8-DN"=c(1,-1))

> rownames(contrast.matrix) <- colnames(design)

> contrast.matrix

CD8-CD4 DN-CD4 CD8-DN

CD8-CD4 1 0 1

DN-CD4 0 1 -1

The contrast matrix can be used to expand the linear model fit and then to compute empirical
Bayes statistics:

> fit2 <- constrast.fit(fit, contrast.matrix)

> fit2 <- eBayes(fit2)

10 Simple Comparisons

10.1 Replicate Arrays

The simplest possible microarray experiment is one with a series of replicate two-color arrays
all comparing the same two RNA sources. For a three-array experiment comparing wild type
(wt) and mutant (mu) RNA, the targets file might contain the following entries:

FileName Cy3 Cy5
File1 wt mu
File2 wt mu
File3 wt mu

A list of differentially expressed genes might be found for this experiment by

> fit <- lmFit(MA)

> fit <- eBayes(fit)

> topTable(fit, adjust="fdr")

where MA holds the normalized data. The default design matrix used here is just a single
column of ones. The experiment here measures the fold change of mutant over wild type.
Genes which have positive M-values are more highly expressed in the mutant RNA while genes
with negative M-values are more highly expressed in the wild type. The analysis is analogous
to the classical single-sample t-test except that we have used empirical Bayes methods to
borrow information between genes.

10.2 Dye Swaps

A simple modification of the above experiment would be to swap the dyes for one of the arrays.
The targets file might now be

FileName Cy3 Cy5
File1 wt mu
File2 mu wt
File3 wt mu
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Now the analysis would be

> design <- c(1,-1,1)

> fit <- lmFit(MA, design)

> fit <- eBayes(fit)

> topTable(fit, adjust="fdr")

Alternatively the design matrix could be set, replacing the first of the above code lines, by

> design <- modelMatrix(targets, ref="wt")

where targets is the data frame holding the targets file information.
If there are at least two arrays with each dye-orientation, it may be useful to estimate

and the probe-specific dye effects. The dye-effect is estimated by an intercept term. If the
experiment was

FileName Cy3 Cy5
File1 wt mu
File2 mu wt
File3 wt mu
File4 mu wt

then we could set

> design <- cbind(DyeEffect=1,MUvsWT=c(1,-1,1,-1))

> fit <- lmFit(MA, design)

> fit <- eBayes(fit)

Now a list of differentially expressed genes would be obtained by

> topTable(fit, coef="MUvsWT", adjust="fdr")

The genes which show dye effects could be seen by

> topTable(fit, coef="DyeEffect", adjust="fdr")

Including the dye-effect in the model in this way uses up one degree of freedom which might
otherwise be used to estimate the residual variability, but may be valuable if many genes show
non-negligible dye-effects.

11 Technical Replication

11.1 Randomized Block

In the previous sections we have assumed that all arrays are biological replicates. Now consider
an experiment in which two wild type and two mutant mice are compared using two arrays
for each pair of mice. The targets might be
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FileName Cy3 Cy5
File1 wt1 mu1
File2 wt1 mu1
File3 wt2 mu2
File4 wt2 mu2

The first and second and third and fourth arrays are technical replicates. It would not be
correct to treat these as four replicate arrays because the technical replicate pairs are not
independent. If there are any differences between two wild type or two mutant mice then the
technical replicate pairs are likely to be positively correlated.

One way to analyze these data is the following:

> corfit <- duplicateCorrelation(MA, ndups=1, block=c(1,1,2,2))

> fit <- lmFit(MA, block=c(1,1,2,2), correlation=corfit$consensus)

> fit <- eBayes(fit)

> topTable(fit, adjust="fdr")

The argument block indicates the two blocks corresponding to biological replicates. The value
corfit$consensus measures the average correlation within the blocks and should be positive.
(If corfit$consensus is negative, then the above method should not be used. In that case
the technical replicate structure can be ignored, meaning that the data can be analyzed as if
all arrays were biological replicates.) This analysis is analogous to mixed model analysis of
variance (Milliken and Johnson, 1992, Chapter 18) except that information has been borrowed
between genes. Information is borrowed (i) by constraining the within-block correlations to
be equal between genes and (ii) by using empirical Bayes methods to moderate the standard
deviations between genes.

If the technical replicates were in dye-swap pairs as

FileName Cy3 Cy5
File1 wt1 mu1
File2 mu1 wt1
File3 wt2 mu2
File4 mu2 wt2

then one might use

> design <- c(1,-1,1,-1)

> corfit <- duplicateCorrelation(MA, design, ndups=1, block=c(1,1,2,2))

> fit <- lmFit(MA, design, block=c(1,1,2,2), correlation=corfit$consensus)

> fit <- eBayes(fit)

> topTable(fit, adjust="fdr")

In this case the correlation corfit$consensus should be negative, because the technical
replicates are dye-swaps and should vary in opposite directions.

This method of handling technical replication using duplicateCorrelation() is somewhat
limited. If for example one techical replicate was dye-swapped and other not,
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FileName Cy3 Cy5
File1 wt1 mu1
File2 mu1 wt1
File3 wt2 mu2
File4 wt2 mu2

then there is no way to use duplicateCorrelation() because the technical replicate correlation
will be negative for the first pair but positive for the second.

11.2 Block Effects

In the last example of the previous section, it was noted that duplicateCorrelation() could
not be used. An alternative is to include a coefficient for mouse in the linear model, i.e., to
fit a separate effect for each mouse. This could be accomplished by defining

> design <- designMatrix(targets, ref="wt1")

> fit <- lmFit(MA, design)

This will fit a linear model with three coefficients,

> colnames(fit)

[1] "mu1" "mu2" "wt2"

which measure differences between the other mice and wt1. The coefficient mu1 measures
the difference between mouse mu1 and mouse wt1. Coefficient mu2 measures the difference
between mu2 and wt1. Coefficient wt2 measures the difference between wt2 and wt1. What
we want is the average difference between the mutant and wild type mice, and this is extracted
by the contrast (mu1+mu2-wt2)/2:

> cont.matrix <- makeContrasts(MUvsWT=(mu1+mu2-wt2)/2, levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust="fdr")

This technique of including an effect for each biological replicate, in this case each mouse,
is well suited to situations with a lot of technical replication. Here is a larger example from a
real experiment. Three mutant mice are to be compared with three wild type mice. Eighteen
two-color arrays were used with each mouse appearing on six different arrays:

> targets

FileName Cy3 Cy5
1391 1391.spot wt1 mu1
1392 1392.spot mu1 wt1
1340 1340.spot wt2 mu1
1341 1341.spot mu1 wt2
1395 1395.spot wt3 mu1
1396 1396.spot mu1 wt3
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1393 1393.spot wt1 mu2
1394 1394.spot mu2 wt1
1371 1371.spot wt2 mu2
1372 1372.spot mu2 wt2
1338 1338.spot wt3 mu2
1339 1339.spot mu2 wt3
1387 1387.spot wt1 mu3
1388 1388.spot mu3 wt1
1399 1399.spot wt2 mu3
1390 1390.spot mu3 wt2
1397 1397.spot wt3 mu3
1398 1398.spot mu3 wt3

The comparison of interest is the average difference between the mutant and wild type mice.
duplicateCorrelation() could not be used here because the arrays do not group neatly into
biological replicate groups. In any case, with six arrays on each mouse it is much safer and
more conservative to fit an effect for each mouse. We could proceed as

> design <- modelMatrix(targets, ref="wt1")

> design <- cbind(Dye=1,design)

> colnames(design)

[1] "Dye" "mu1" "mu2" "mu3" "wt2" "wt3"

The above code treats the first wild-type mouse as a baseline reference so that columns of the
design matrix represent the difference between each of the other mice and wt1. The design
matrix also includes an intercept term which represents the dye effect of cy5 over cy3 for each
gene. If you don’t wish to allow for a dye effect, the second line of code can be omitted.

> fit <- lmFit(MA, design)

> cont.matrix <- makeContrasts(muvswt=(mu1+mu2+mu3-wt2-wt3)/3, levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust="fdr")

The contrast defined by the function makeContrasts represents the average difference between
the mutant and wild-type mice, which is the comparison of interest.

This general approach is applicable to many studies involving biological replicates. Here
is another example based on a real example conducted by the WEHI Scott Lab. RNA is
collected from four human subjects from the same family, two affected by a leukemia-inducing
mutation and two unaffected. Each of the two affected subjects (A1 and A2) is compared
with each of the two unaffected subjects (U1 and U2):

FileName Cy3 Cy5
File1 U1 A1
File2 A1 U2
File3 U2 A2
File4 A2 U1
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Our interest is to find genes which are differentially expressed between the affected and unaf-
fected subjects. Although all four arrays compare an affected with an unaffected subject, the
four arrays are not independent. We need to take account of the fact that RNA from each
subject appears on two different arrays. We do this by fitting a model with a coefficient for
each subject and then extracting the contrast between the affected and unaffected subjects:

> design <- modelMatrix(targets, ref="U1")

> fit <- lmFit(MA, design)

> cont.matrix <- makeContrasts(AvsU=(A1+A2-U2)/2, levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust="fdr")

12 Two Groups: Common Reference

Suppose now that we wish to compare two wild type (Wt) mice with three mutant (Mu) mice
using arrays hybridized with a common reference RNA (Ref):

FileName Cy3 Cy5
File1 Ref WT
File2 Ref WT
File3 Ref Mu
File4 Ref Mu
File5 Ref Mu

The interest here is in the comparison between the mutant and wild type mice. There are two
major ways in which this comparison can be made. We can

1. create a design matrix which includes a coefficient for the mutant vs wild type difference,
or

2. create a design matrix which includes separate coefficients for wild type and mutant
mice and then extract the difference as a contrast.

For the first approach, the design matrix should be as follows

> design

WTvsREF MUvsWT
Array1 1 0
Array2 1 0
Array3 1 1
Array4 1 1
Array5 1 1

Here the first coefficient estimates the difference between wild type and the reference for each
probe while the second coefficient estimates the difference between mutant and wild type.
For those not familiar with model matrices in linear regression, it can be understood in the
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following way. The matrix indicates which coefficients apply to each array. For the first
two arrays the fitted values will be just the WTvsREF coefficient, which is correct. For the
remaining arrays the fitted values will be WTvsREF + MUvsWT, which is equivalent to mutant vs
reference, also correct. For reasons that will be apparent later, this is sometimes called the
treatment-contrasts parametrization. Differentially expressed genes can be found by

> fit <- lmFit(MA, design)

> fit <- eBayes(fit)

> topTable(fit, coef="MUvsWT", adjust="fdr")

There is no need here to use contrasts.fit() because the comparison of interest is already
built into the fitted model. This analysis is analogous to the classical pooled two-sample t-test
except that information has been borrowed between genes.

For the second approach, the design matrix should be

WT MU
Array1 1 0
Array2 1 0
Array3 0 1
Array4 0 1
Array5 0 1

The first coefficient now represents wild-type vs the reference and the second represents mutant
vs the reference. Our comparison of interest is the difference between these two coefficients.
We will call this the group-means parametrization. Differentially expressed genes can be found
by

> fit <- lmFit(MA, design)

> cont.matrix <- makeContrasts(MUvsWT=WT-MU, levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust="fdr")

The results will be exactly the same as for the first approach.
The design matrix can be constructed

1. manually,

2. using the limma function modelMatrix(), or

3. using the built-in R function model.matrix().

Let Group be the factor defined by

> Group <- factor(c("WT","WT","Mu","Mu","Mu"), levels=c("WT","Mu"))

For the first approach, the treatment-contrasts parametrization, the design matrix can be
computed by

> design <- cbind(WTvsRef=1,MUvsWT=c(0,0,1,1,1))
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or by

> param <- cbind(WTvsRef=c(-1,1,0),MUvsWT=c(0,-1,1))

> rownames(param) <- c("Ref","WT","Mu")

> design <- modelMatrix(targets, parameters=param)

or by

> design <- model.matrix(~Group)

> colnames(design) <- c("WTvsRef","MUvsWT")

all of which produce the same result. For the second approach, the group-means parametriza-
tion, the design matrix can be computed by

> design <- cbind(WT=c(1,1,0,0,0,MU=c(0,0,1,1,1))

or by

> param <- cbind(WT=c(-1,1,0),MU=c(-1,0,1))

> rownames(param) <- c("Ref","WT","Mu")

> design <- modelMatrix(targets, parameters=param)

or by

> design <- model.matrix(~0+Group)

> colnames(design) <- c("WT","Mu")

all of which again produce the same result.

13 Two Groups: Affymetrix

Suppose now that we wish to compare two wild type (Wt) mice with three mutant (Mu) mice
using Affymetrix arrays or any other single-channel array technology:

FileName Target
File1 WT
File2 WT
File3 Mu
File4 Mu
File5 Mu

Everything is exactly as in the previous section, except that the function modelMatrix() would
not be used. We can either

1. create a design matrix which includes a coefficient for the mutant vs wild type difference,
or

2. create a design matrix which includes separate coefficients for wild type and mutant
mice and then extract the difference as a contrast.
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For the first approach, the treatment-contrasts parametrization, the design matrix should be
as follows:

> design

WT MUvsWT
Array1 1 0
Array2 1 0
Array3 1 1
Array4 1 1
Array5 1 1

Here the first coefficient estimates the mean log-expression for wild type mice and plays the
role of an intercept. The second coefficient estimates the difference between mutant and wild
type. Differentially expressed genes can be found by

> fit <- lmFit(eset, design)

> fit <- eBayes(fit)

> topTable(fit, coef="MUvsWT", adjust="fdr")

where eset is an exprSet or matrix object containing the log-expression values. For the second
approach, the design matrix should be

WT MU
Array1 1 0
Array2 1 0
Array3 0 1
Array4 0 1
Array5 0 1

Differentially expressed genes can be found by

> fit <- lmFit(eset, design)

> cont.matrix <- makeContrasts(MUvsWT=WT-MU, levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust="fdr")

For the first approach, the treatment-contrasts parametrization, the design matrix can be
computed by

> design <- cbind(WT=1,MUvsWT=c(0,0,1,1,1))

or by

> design <- model.matrix(~Group)

> colnames(design) <- c("WT","MUvsWT")

For the second approach, the group-means parametrization, the design matrix can be com-
puted by

> design <- cbind(WT=c(1,1,0,0,0,MU=c(0,0,1,1,1))

or by

> design <- model.matrix(~0+Group)

> colnames(design) <- c("WT","MU")
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14 Several Groups

The above approaches for two groups extend easily to any number of groups. Suppose that
three RNA targets to be compared using Affymetrix� arrays. Suppose that the three targets
are called“RNA1”, “RNA2”and“RNA3”and that the column targets$Target indicates which
one was hybridized to each array. An appropriate design matrix can be created using

> f <- factor(targets$Target, levels=c("RNA1","RNA2","RNA3"))

> design <- model.matrix(~0+f)

> colnames(design) <- c("RNA1","RNA2","RNA3")

To make all pair-wise comparisons between the three groups one could proceed

> fit <- lmFit(eset, design)

> contrast.matrix <- makeContrasts(RNA2-RNA1, RNA3-RNA2, RNA3-RNA1,

+ levels=design)

> fit2 <- contrasts.fit(fit, contrast.matrix)

> fit2 <- eBayes(fit2)

A list of top genes for RNA2 versus RNA1 can be obtained from

> topTable(fit2, coef=1, adjust="fdr")

The outcome of each hypothesis test can be assigned using

> results <- decideTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison can be obtained
from

> vennDiagram(results)

The statistic fit2$F and the corresponding fit2$F.p.value combine the three pair-wise
comparisons into one F -test. This is equivalent to a one-way ANOVA for each gene except
that the residual mean squares have been moderated between genes. To find genes which vary
between the three RNA targets in any way, look for genes with small p-values. To find the
top 30 genes:

> o <- order(fit2$F.p.value}

> fit2$genes[o[1:30],]

Now suppose that the experiment had been conducted using two-color arrays with a com-
mon reference instead of Affymetrix� arrays. For example the targets frame might be

FileName Cy3 Cy5
File1 Ref RNA1
File2 RNA1 Ref
File3 Ref RNA2
File4 RNA2 Ref
File5 Ref RNA3

For this experiment the design matrix could be formed by

> design <- modelMatrix(targets, ref="Ref")

and everything else would be as for the Affymetrix� experiment.
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15 Factorial Designs

Factorial designs are those where more than one experimental dimension is being varied and
each combination of treatment conditions is observed. Suppose that cells are extracted from
wild type and mutant mice and these cells are either stimulated (S) or unstimulated (U). RNA
from the treated cells is then extracted and hybridized to a microarray. We will assume for
simplicity that the arrays are single-color arrays such as Affymetrix. Consider the following
targets frame:

FileName Strain Treatment
File1 WT U
File2 WT S
File3 Mu U
File4 Mu S
File5 Mu S

The two experimental dimensions or factors here are Strain and Treatment. Strain specifies
the genotype of the mouse from which the cells are extracted and Treatment specifies whether
the cells are stimulated or not. All four combinations of Strain and Treatment are observed,
so this is a factorial design. It will be convenient for us to collect the Strain/Treatment
combinations into one vector as follows:

> TS <- paste(targets$Strain, targets$Treatment, sep=".")

> TS

[1] "WT.U" "WT.S" "Mu.U" "Mu.S" "Mu.S"

It is especially important with a factorial design to decide what are the comparisons of
interest. We will assume here that the experimenter is interested in

1. which genes respond to stimulation in wild-type cells,

2. which genes respond to stimulation in mutant cells, and

3. which genes respond differently in mutant compared to wild-type cells.

as these are the questions which are most usually relevant in a molecular biology context.
The first of these questions relates to the WT.S vs WT.U comparison and the second to Mu.S vs
Mu.U. The third relates to the difference of differences, i.e., (Mu.S-Mu.U)-(WT.S-WT.U), which
is called the interaction term.

We describe first a simple way to analyse this experiment using limma commands in a
similar way to that in which two-sample designs were analyzed. Then we will go on to describe
the more classical statistical approaches using factorial model formulas. All the approaches
considered are equivalent and yield identical bottom-line results. The most basic approach is
to fit a model with a coefficient for each of the four factor combinations and then to extract
the comparisons of interest as contrasts:
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> TS <- factor(TS, levels=c("WT.U","WT.S","Mu.U","Mu.S"))

> design <- model.matrix(~0+TS)

> colnames(design) <- levels(TS)

> fit <- lmFit(eset, design)

This fits a model with four coefficients corresponding to WT.U, WT.S, Mu.U and Mu.S respectively.
Our three contrasts of interest can be extracted by

> cont.matrix <- makeContrasts(

+ WT.SvsU=WT.S-WT.U,

+ Mu.SvsU=Mu.S-Mu.U,

+ Diff=(Mu.S-Mu.U)-(WT.S-WT.U),

+ levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

We can use topTable() to look at lists of differentially expressed genes for each of three
contrasts, or else

> results <- decideTests(fit2)

> vennDiagram(results)

to look at all three contrasts simultaneously.
The analysis of factorial designs has a long history in statistics and a system of factorial

model formulas has been developed to facilitate the analysis of complex designs. It is important
to understand though that the above three molecular biology questions do not correspond to
any of the usual parametrizations used in statistics for factorial designs. Suppose for example
that we proceed in the usual statistical way,

> Strain <- factor(targets$Strain, levels=c("WT","Mu"))

> Treatment <- factor(targets$Treatment, levels=c("U","S"))

> design <- model.matrix(~Strain*Treatment)

This creates a design matrix which defines four coefficients with the following interpretations:

Coefficient Comparison Interpretation
Intercept WT.U Baseline level of unstimulated WT
StrainMu Mu.U-WT.U Difference between unstimulated strains
TreatmentS WT.S-WT.U Stimulation effect for WT
StrainMu:TreatmentS (Mu.S-Mu.U)-(WT.S-WT.U) Interaction

This is called the treatment-contrast parametrization. Notice that one of our comparisons of
interest, Mu.S-Mu.U, is not represented and instead the comparison Mu.U-WT.U, which might
not be of direct interest, is included. We need to use contrasts to extract all the comparisons
of interest:

> fit <- lmFit(eset, design)

> cont.matrix <- cbind(WT.SvsU=c(0,0,1,0),Mu.SvsU=c(0,0,1,1),Diff=c(0,0,0,1))

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)
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This extracts the WT stimulation effect as the third coefficient and the interaction as the
fourth coefficient. The mutant stimulation effect is extracted as the sum of the third and
fourth coefficients of the original model. This analysis yields exactly the same results as the
previous analysis.

An even more classical statistical approach to the factorial experiment would be to use the
sum to zero parametrization. In R this is achieved by

> contrasts(Strain) <- contr.sum(2)

> contrasts(Treatment) <- contr.sum(2)

> design <- model.matrix(~Strain*Treatment)

This defines four coefficients with the following interpretations:

Coefficient Comparison Interpretation
Intercept (WT.U+WT.S+Mu.U+Mu.S)/4 Grand mean
Strain1 (WT.U+WT.S-Mu.U-Mu.S)/4 Strain main effect
Treatment1 (WT.U-WT.S+Mu.U-Mu.S)/4 Treatment main effect
Strain1:Treatment1 (WT.U-WT.S-Mu.U+Mu.S)/4 Interaction

This parametrization has many appealing mathematical properties and is the classical para-
metrization used for factorial designs in much experimental design theory. However it defines
only one coefficient which is directly of interest to us, namely the interaction. Our three
contrasts of interest could be extracted using

> fit <- lmFit(eset, design)

> cont.matrix <- cbind(WT.SvsU=c(0,0,-2,-2),Mu.SvsU=c(0,0,-2,2),Diff=c(0,0,0,4))

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

The results will be identical to those for the previous two approaches.
The three approaches described here for the 2 × 2 factorial problem are equivalent and

differ only in the parametrization chosen for the linear model. The three fitted model objects
fit will differ only in the coefficients and associated components. The residual standard
deviations fit$sigma, residual degrees of freedom fit$df.residual and all components of
fit2 will be identical for the three approaches. Since the three approaches are equivalent,
users are free to choose whichever one is most convenient or intuitive.

16 Time Course Experiments

Time course experiments are those in which RNA is extracted at several time points after
the onset of some treatment or stimulation. Simple time course experiments are similar to
experiments with several groups covered in Section 14. Here we consider a two-way experiment
in which time course profiles are to be compared for two genotypes. Consider the targets frame
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FileName Target
File1 wt.0hr
File2 wt.0hr
File3 wt.6hr
File4 wt.24hr
File5 mu.0hr
File6 mu.0hr
File7 mu.6hr
File8 mu.24hr

The targets are RNA samples collected from wild-type and mutant animals at 0, 6 and 24
hour time points. This can be viewed as a factorial experiment but a simpler approach is to
use the group-mean parametrization.

> lev <- c("wt.0hr","wt.6hr","wt.24hr","mu.0hr","mu.6hr","mu.24hr")

> f <- factor(targets$Target, levels=lev)

> design <- model.matrix(~0+f)

> colnames(design) <- lev

> fit <- lmFit(eset, design)

Which genes respond at either the 6 hour or 24 hour times in the wild-type? We can find
these by extracting the contrasts between the wild-type times.

> cont.wt <- contrastMatrix(

+ "wt.6hr-wt.0hr",

+ "wt.24hr-wt.6hr",

+ levels=design)

> fit2 <- contrasts.fit(fit, cont.wt)

Choose genes so that the expected false discovery rate is less than 5%.

> selected.wt <- p.adjust(fit2$F.p.value, method="fdr") < 0.05

Any two contrasts between the three times would give the same result. The same gene list
would be obtained had "wt.24hr-wt.0hr" been used in place of "wt.24hr-wt.6hr" for example.

Which genes respond in the mutant?

> cont.mu <- contrastMatrix(

+ "mu.6hr-mu.0hr",

+ "mu.24hr-wt.6hr",

+ levels=design)

> fit2 <- contrasts.fit(fit, cont.mu)

> selected.mu <- p.adjust(fit2$F.p.value, method="fdr") < 0.05

Which genes respond differently in the mutant relative to the wild-type?

> cont.dif <- contrastMatrix(

+ Dif6hr =(mu.6hr-mu.0hr)-(wt.6hr-wt.0hr),

+ Dif24hr=(mu.24hr-mu.6hr)-(wt.24hr-wt.6hr),

+ levels=design)

> fit2 <- contrasts.fit(fit, cont.dif)

> selected.dif <- p.adjust(fit2$F.p.value, method="fdr") < 0.05
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17 Separate Channel Analysis of Two-Color Data

Consider an experiment comparing young and old animals for both both wild-type and mutant
genotypes.

FileName Cy3 Cy5
File1 wt.young wt.old
File2 wt.old wt.young
File3 mu.young mu.old
File4 mu.old mu.young

Each of the arrays in this experiment makes a direct comparison between young and old RNA
targets. There are no arrays which compare wild-type and mutant animals. This is an example
of an unconnected design in that there are no arrays linking the wild-type and mutant targets.
It is not possible to make comparisons between wild-type and mutant animals on the basis of
log-ratios alone. So to do this it is necessary to analyse the red and green channels intensities
separately, i.e., to analyze log-intensities instead of log-ratios. It is possible to do this using
a mixed model representation which treats each spot as a randomized block [6, 4]. Limma
implements mixed model methods for separate channel analysis which make use of shrinkage
methods to ensure stable and reliable inference with small numbers of arrays [4]. Limma also
provides between-array normalization to prepare for separate channel analysis, for example

> MA <- normalizeBetweenArrays(MA, method="Aquantile")

scales the intensities so that A-values have the same distribution across arrays.
The first step in the differential expression analysis is to convert the targets frame to be

channel rather than array orientated.

> targets2 <- targetsA2C(targets)

> targets2

channel.col FileName Target
File1.1 1 File1 wt.young
File1.2 2 File1 wt.old
File2.1 1 File2 wt.old
File2.2 2 File2 wt.young
File3.1 1 File3 mu.young
File3.2 2 File3 mu.old
File4.1 1 File4 mu.old
File4.2 2 File4 mu.young

The following code produces a design matrix with eight rows and four columns:

> u <- unique(targets2$Target)

> f <- factor(targets2$Target, levels=u)

> design <- model.matrix(~0+f)

> colnames(design) <- u
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Inference proceeds as for within-array replicate spots except that the correlation to be es-
timated is that between the two channels for the same spot rather than between replicate
spots.

> corfit <- intraspotCorrelation(MA, design)

> fit <- lmscFit(MA, design, correlation=corfit$consensus)

Subsequent steps proceed as for log-ratio analyses. For example if we want to campare wild-
type young to mutant young animals, we could extract this contrast by

> cont.matrix <- makeContrasts("mu.young-wt.young",levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust="fdr")

18 Statistics for Differential Expression

A number of summary statistics are computed by the eBayes() function for each gene and
each contrast. The M-value (M) is the log2-fold change, or sometimes the log2-expression level,
for that gene. The A-value (A) is the the average expression level for that gene across all the
arrays and channels. The moderated t-statistic (t) is the ratio of the M-value to its standard
error. This has the same interpretation as an ordinary t-statistic except that the standard
errors have been moderated across genes, i.e., shrunk towards a common value. This has the
effect of borrowing information from the ensemble of genes to aid with inference about each
individual gene. The ordinary t-statistics are not recommended, but they can be recovered by

> tstat.ord <- fit$coef / fit$stdev.unscaled / fit$sigma

after fitting a linear model. The ordinary t-statistic is on fit$df.residual degrees of freedom
while the moderated t-statistic is on fit$df.residual+fit$df.prior degrees of freedom.

The p-value (p-value) is obtained from the distribution of the moderated t-statistic, usually
after some form of adjustment for multiple testing.

The B-statistic (lods or B) is the log-odds that that gene is differentially expressed.
Suppose for example that B=1.5. The odds of differential expression is exp(1.5)=4.48, i.e,
about four and a half to one. The probability that the gene is differentially expressed is
4.48/(1+4.48)=0.82, i.e., the probability is about 82% that this gene is differentially ex-
pressed. A B-statistic of zero corresponds to a 50-50 chance that the gene is differentially
expressed. The B-statistic is automatically adjusted for multiple testing by assuming that 1%
of the genes, or some other percentage specified by the user, are expected to be differentially
expressed. If there are no missing values in your data, then the moderated t and B statistics
will rank the genes in exactly the same order. Even you do have spot weights or missing data,
the p-values and B-statistics will usually provide a very similar ranking of the genes.

Please keep in mind that the moderated t-statistic p-values and the B-statistic probabil-
ities depend on various sorts of mathematical assumptions which are never exactly true for
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microarray data. The B-statistics also depend on a prior guess for the proportion of differ-
entially expressed genes. Therefore they are intended to be taken as a guide rather than
as a strict measure of the probability of differential expression. Of the three statistics, the
moderated-t, the associated p-value and the B-statistics, we usually base our gene selections
on the p-value. All three measures are closely related, but the moderated-t and its p-value do
not require a prior guess for the number of differentially expressed genes.

The above mentioned statistics are computed for every contrast for each gene. The
eBayes() function computes one more useful statistic. The moderated F-statistic (F) com-
bines the t-statistics for all the contrasts into an overall test of significance for that gene.
The moderated F-statistic tests whether any of the contrasts are non-zero for that gene, i.e.,
whether that gene is differentially expressed on any contrast. The moderated-F has numerator
degrees of freedom equal to the number of contrasts and denominator degrees of freedom the
same as the moderated-t. Its p-value is stored as fit$F.p.value. It is similar to the ordinary
F-statistic from analysis of variance except that the denominator mean squares are moderated
across genes.

In a complex experiment with many contrasts, it may be desirable to select genes firstly on
the basis of their moderated F-statistics, and subsequently to decide which of the individual
contrasts are significant for the selected genes. This cuts down on the number of tests which
need to be conducted and therefore on the amount of adjustment for multiple testing. The
function decideTests() with method="nestedF" is able to conduct such tests.

A warning on distributional assumptions. In the microarray context it is difficult to
verify distributional assumptions, such as normality of the M-values, that the p-values are
based on. This is a limitation of all model-based methods for micoarray data. This means
that the p-values given are intended as a guide only.

19 Adjusting for Multiple Testing

The functions topTable() and decideTests() adjust p-values for multiple testing. The func-
tions give access to the methods implemented in the R function p.adjust(), notably to Holm’s
step-down Bonferroni method (adjust="holm") and to Benjamini and Hochberg’s (1005) step-
up method for controlling the false discovery rate (adjust="fdr"). Benjamini and Hochberg’s
method is the most popular in the microarray context. The approach adopted by p.adjust()

and by limma is to implement the adjustment methods through adjusted p-values. The mean-
ing of the adjusted p-value is as follows. If you wish to control the false discovery rate to be
less than a certain value q, say 0.05, then select as differentially expressed all those genes which
have adjusted p-value less than q. This procedure is equivalent to the procedure of Benjamini
and Hochberg (1995), although that procedure is not formulated in terms of adjusted p-values
in the original paper.

Note that Benjamini and Hochberg’s method assumes that the p-values are independent
across probes are independent, whereas they are likely to be somewhat dependent as a result
of being based on observations made on the same set of arrays. Reiner et al (2003) have
argued that Benjamini and Hochberg’s method does continue to control the false discovery
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rate for a range of dependence structures including positive dependence.
It may be found in some cases that none of the adjusted p-values are small even though

many of the raw p-values seem highly significant. If none of the raw p-value are less than 1/G,
where G is the number of genes included in the fit, then all of the adjusted p-values will the
equal to 1. (G is given by nrow(fit) if fit is an MArrayLM object) This is true for any of the
adjustment methods except for adjust="none". Since 1/G is about the expected size of the
smallest p-values given purely random variation and uniform p-values, this means that there
is no overall evidence of differential expression. If G is large this may be true even if many of
the raw p-values would be highly significant taken as individual values.

20 Data Objects in Limma

There are four main types of data objects created and used in limma:

RGList. Red-Green list. A class used to store raw intensities as they are read in from an
image analysis output file, usually by read.maimages().

MAList. Intensities converted to M-values and A-values, i.e., to with-spot and whole-spot
contrasts on the log-scale. Usually created from an RGList using MA.RG() or normal-

izeWithinArrays(). Objects of this class contain one row for each spot. There may be
more than one spot and therefore more than one row for each probe.

MArrayLM. Store the result of fitting gene-wise linear models to the normalized intensities or
log-ratios. Usually created by lmFit. Objects of this class normally contain one row for
each unique probe.

TestResults. Store the results of testing a set of contrasts equal to zero for each probe.
Usually created by decideTests. Objects of this class normally contain one row for each
unique probe.

For those who are familiar with matrices in R, all these objects are designed to obey many
analogies with matrices. In the case of RGList and MAList, rows correspond to spots and
columns to arrays. In the case of MarrayLM, rows correspond to unique probes and columns to
parameters or contrasts. The functions summary, dim, length, ncol, nrow, dimnames, rownames,
colnames have methods for these classes. For example

> dim(RG)

[1] 11088 4

shows that the RGList object RG contains data for 11088 spots and 4 arrays.

> colnames(RG)

will give the names of the filenames or arrays in the object, while if fit is an MArrayLM object
then
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> colnames(fit)

would give the names of the coefficients in the linear model fit.
Objects of any of these classes may be subsetted, so that RG[,j] means the data for array

j and RG[i,] means the data for probes indicated by the index i. Multiple data objects may
be combined using cbind, rbind or merge. Hence

> RG1 <- read.maimages(files[1:2], source="genepix")

> RG2 <- read.maimages(files[3:5], source="genepix")

> RG <- cbind(RG1, RG2)

is equivalent to

> RG <- read.maimages(files[1:5], source="genepix")

Alternatively, if control status has been set in the an MAList object then

> i <- MA$genes$Status=="Gene"

> MA[i,]

might be used to eliminate control spots from the data object prior to fitting a linear model.

21 Case Studies

21.1 Swirl Zebrafish: A Single-Sample Experiment

In this section we consider a case study in which two RNA sources are compared directly on a
set of replicate or dye-swap arrays. The case study includes reading in the data, data display
and exploration, as well as normalization and differential expression analysis. The analysis of
differential expression is analogous to a classical one-sample test of location for each gene.

In this example we assume that the data is provided as a GAL file called fish.gal and
raw SPOT output files and that these files are in the current working directory.

> dir()

[1] "fish.gal" "swirl.1.spot" "swirl.2.spot" "swirl.3.spot" "swirl.4.spot"
[6] "SwirlSample.txt"

Background. The experiment was carried out using zebrafish as a model organism to study
the early development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects
the dorsal/ventral body axis. The main goal of the Swirl experiment is to identify genes with
altered expression in the Swirl mutant compared to wild-type zebrafish.

The hybridizations. Two sets of dye-swap experiments were performed making a total of
four replicate hybridizations. Each of the arrays compares RNA from swirl fish with RNA
from normal (“wild type”) fish. The experimenters have prepared a tab-delimited targets file
called SwirlSamples.txt which describes the four hybridizations:
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> library(limma)

> targets <- readTargets("SwirlSample.txt")

> targets

SlideNumber FileName Cy3 Cy5 Date
1 81 swirl.1.spot swirl wild type 2001/9/20
2 82 swirl.2.spot wild type swirl 2001/9/20
3 93 swirl.3.spot swirl wild type 2001/11/8
4 94 swirl.4.spot wild type swirl 2001/11/8

We see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and
93, swirl RNA was labelled with green (Cy3) dye and wild type RNA was labelled with red
(Cy5) dye. On slides 82 and 94, the labelling was the other way around.

Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF
image, which was then processed using the image analysis software SPOT. The data from the
arrays are stored in the four output files listed under FileName. Now we read the intensity
data into an RGList object in R. The default for SPOT output is that Rmean and Gmean are
used as foreground intensities and morphR and morphG are used as background intensities:

> RG <- read.maimages(targets$FileName, source="spot")

Read swirl.1.spot

Read swirl.2.spot

Read swirl.3.spot

Read swirl.4.spot

> RG

An object of class "RGList"

$R

swirl.1 swirl.2 swirl.3 swirl.4

[1,] 19538.470 16138.720 2895.1600 14054.5400

[2,] 23619.820 17247.670 2976.6230 20112.2600

[3,] 21579.950 17317.150 2735.6190 12945.8500

[4,] 8905.143 6794.381 318.9524 524.0476

[5,] 8676.095 6043.542 780.6667 304.6190

8443 more rows ...

$G

swirl.1 swirl.2 swirl.3 swirl.4

[1,] 22028.260 19278.770 2727.5600 19930.6500

[2,] 25613.200 21438.960 2787.0330 25426.5800

[3,] 22652.390 20386.470 2419.8810 16225.9500

[4,] 8929.286 6677.619 383.2381 786.9048

[5,] 8746.476 6576.292 901.0000 468.0476

8443 more rows ...

$Rb

swirl.1 swirl.2 swirl.3 swirl.4

[1,] 174 136 82 48

[2,] 174 133 82 48

[3,] 174 133 76 48

[4,] 163 105 61 48

[5,] 140 105 61 49
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8443 more rows ...

$Gb

swirl.1 swirl.2 swirl.3 swirl.4

[1,] 182 175 86 97

[2,] 171 183 86 85

[3,] 153 183 86 85

[4,] 153 142 71 87

[5,] 153 142 71 87

8443 more rows ...

The arrays. The microarrays used in this experiment were printed with 8448 probes (spots),
including 768 control spots. The array printer uses a print head with a 4x4 arrangement of
print-tips and so the microarrays are partitioned into a 4x4 grid of tip groups. Each grid
consists of 22x24 spots that were printed with a single print-tip. The gene name associated
with each spot is recorded in a GenePix array list (GAL) file:

> RG$genes <- readGAL("fish.gal")

> RG$genes[1:30,]

Block Row Column ID Name
1 1 1 1 control geno1
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSSC
5 1 1 5 control 3XSSC
6 1 1 6 control EST1
7 1 1 7 control geno1
8 1 1 8 control geno2
9 1 1 9 control geno3
10 1 1 10 control 3XSSC
11 1 1 11 control 3XSSC
12 1 1 12 control 3XSSC
13 1 1 13 control EST2
14 1 1 14 control EST3
15 1 1 15 control EST4
16 1 1 16 control 3XSSC
17 1 1 17 control Actin
18 1 1 18 control Actin
19 1 1 19 control 3XSSC
20 1 1 20 control 3XSSC
21 1 1 21 control 3XSSC
22 1 1 22 control 3XSSC
23 1 1 23 control Actin
24 1 1 24 control Actin
25 1 2 1 control ath1
26 1 2 2 control Cad-1
27 1 2 3 control DeltaB
28 1 2 4 control Dlx4
29 1 2 5 control ephrinA4
30 1 2 6 control FGF8
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The 4x4x22x24 print layout also needs to be set. The easiest way to do this is to infer it
from the GAL file:

> RG$printer <- getLayout(RG$genes)

Image plots. It is interesting to look at the variation of background values over the array.
Consider image plots of the red and green background for the first array:

> imageplot(log2(RG$Rb[,1]), RG$printer, low="white", high="red")

> imageplot(log2(RG$Gb[,1]), RG$printer, low="white", high="green")

Image plot of the un-normalized log-ratios or M-values for the first array:

> MA <- normalizeWithinArrays(RG, method="none")

> imageplot(MA$M[,1], RG$printer, zlim=c(-3,3))
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The imageplot function lies the slide on its side, so the first print-tip group is bottom left
in this plot. We can see a red streak across the middle two grids of the 3rd row caused by
a scratch or dust on the array. Spots which are affected by this artefact will have suspect
M-values. The streak also shows up as darker regions in the background plots.

MA-plots. An MA-plot plots the log-ratio of R vs G against the overall intensity of each
spot. The log-ratio is represented by the M-value, M = log2(R) − log2(G), and the overall
intensity by the A-value, A = (log2(R)+log2(G))/2. Here is the MA-plot of the un-normalized
values for the first array:

> plotMA(MA)

The red streak seen on the image plot can be seen as a line of spots in the upper right of
this plot. Now we plot the individual MA-plots for each of the print-tip groups on this array,
together with the loess curves which will be used for normalization:
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> plotPrintTipLoess(MA)

Normalization. Print-tip loess normalization:

> MA <- normalizeWithinArrays(RG)

> plotPrintTipLoess(MA)

We have normalized the M-values with each array. A further question is whether normalization
is required between the arrays. The following plot shows overall boxplots of the M-values for
the four arrays.

> boxplot(MA$M~col(MA$M),names=colnames(MA$M))
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There is some evidence that the different arrays have different spreads of M-values, so we
will scale normalize between the arrays.

> MA <- normalizeBetweenArrays(MA)

> boxplot(MA$M~col(MA$M),names=colnames(MA$M))

Linear model. Now estimate the average M-value for each gene. We do this by fitting a
simple linear model for each gene. The negative numbers in the design matrix indicate the
dye-swaps.
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> design <- c(-1,1,-1,1)

> fit <- lmFit(MA,design)

> fit

An object of class "MArrayLM"
$coefficients
[1] -0.3943421 -0.3656843 -0.3912506 -0.2505729 -0.3432590
8443 more elements ...

$stdev.unscaled
[1] 0.5 0.5 0.5 0.5 0.5
8443 more elements ...

$sigma
[1] 0.3805154 0.4047829 0.4672451 0.3206071 0.2838043
8443 more elements ...

$df.residual
[1] 3 3 3 3 3
8443 more elements ...

$method
[1] "ls"

$design
[,1]

[1,] -1
[2,] 1
[3,] -1
[4,] 1

$genes
Block Row Column ID Name

1 1 1 1 control geno1
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSSC
5 1 1 5 control 3XSSC
8443 more rows ...

$Amean
[1] 13.46481 13.67631 13.42665 10.77730 10.88446
8443 more elements ...

In the above fit object, coefficients is the average M-value for each gene and sigma is the
sample standard deviations for each gene. Ordinary t-statistics for comparing mutant to wt
could be computed by

> ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigma

We prefer though to use empirical Bayes moderated t-statistics which are computed below.
Now create an MA-plot of the average M and A-values for each gene.
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> plotMA(fit)

> abline(0,0,col="blue")

Empirical Bayes analysis. We will now go on and compute empirical Bayes statistics for
differential expression. The moderated t-statistics use sample standard deviations which have
been shrunk towards a pooled standard deviation value.

> fit <- eBayes(fit)

> qqt(fit$t,df=fit$df.prior+fit$df.residual,pch=16,cex=0.2)

> abline(0,1)

49



Visually there seems to be plenty of genes which are differentially expressed. We will obtain
a summary table of some key statistics for the top genes.

> options(digits=3)

> topTable(fit,number=30,adjust="fdr")

Block Row Column ID Name M A t P.Value B
3721 8 2 1 control BMP2 -2.21 12.1 -21.1 0.000357 7.96
1609 4 2 1 control BMP2 -2.30 13.1 -20.3 0.000357 7.78
3723 8 2 3 control Dlx3 -2.18 13.3 -20.0 0.000357 7.71
1611 4 2 3 control Dlx3 -2.18 13.5 -19.6 0.000357 7.62
8295 16 16 15 fb94h06 20-L12 1.27 12.0 14.1 0.002067 5.78
7036 14 8 4 fb40h07 7-D14 1.35 13.8 13.5 0.002067 5.54
515 1 22 11 fc22a09 27-E17 1.27 13.2 13.4 0.002067 5.48
5075 10 14 11 fb85f09 18-G18 1.28 14.4 13.4 0.002067 5.48
7307 14 19 11 fc10h09 24-H18 1.20 13.4 13.2 0.002067 5.40
319 1 14 7 fb85a01 18-E1 -1.29 12.5 -13.1 0.002067 5.32
2961 6 14 9 fb85d05 18-F10 -2.69 10.3 -13.0 0.002067 5.29
4032 8 14 24 fb87d12 18-N24 1.27 14.2 12.8 0.002067 5.22
6903 14 2 15 control Vox -1.26 13.4 -12.8 0.002067 5.20
4546 9 14 10 fb85e07 18-G13 1.23 14.2 12.8 0.002067 5.18
683 2 7 11 fb37b09 6-E18 1.31 13.3 12.4 0.002182 5.02
1697 4 5 17 fb26b10 3-I20 1.09 13.3 12.4 0.002182 4.97
7491 15 5 3 fb24g06 3-D11 1.33 13.6 12.3 0.002182 4.96
4188 8 21 12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002209 4.89
4380 9 7 12 fb37e11 6-G21 1.23 14.0 12.0 0.002216 4.80
3726 8 2 6 control fli-1 -1.32 10.3 -11.9 0.002216 4.76
2679 6 2 15 control Vox -1.25 13.4 -11.9 0.002216 4.71
5931 12 6 3 fb32f06 5-C12 -1.10 13.0 -11.7 0.002216 4.63
7602 15 9 18 fb50g12 9-L23 1.16 14.0 11.7 0.002216 4.63
2151 5 2 15 control vent -1.40 12.7 -11.7 0.002216 4.62
3790 8 4 22 fb23d08 2-N16 1.16 12.5 11.6 0.002221 4.58
7542 15 7 6 fb36g12 6-D23 1.12 13.5 11.0 0.003000 4.27
4263 9 2 15 control vent -1.41 12.7 -10.8 0.003326 4.13
6375 13 2 15 control vent -1.37 12.5 -10.5 0.004026 3.91
1146 3 4 18 fb22a12 2-I23 1.05 13.7 10.2 0.004242 3.76
157 1 7 13 fb38a01 6-I1 -1.82 10.8 -10.2 0.004242 3.75

The top gene is BMP2 which is significantly down-regulated in the Swirl zebrafish, as it should
be because the Swirl fish are mutant in this gene. Other positive controls also appear in the
top 30 genes in terms.

In the table, t is the empirical Bayes moderated t-statistic, the corresponding P-values
have been adjusted to control the false discovery rate and B is the empirical Bayes log odds of
differential expression.

> plotMA(fit)

> ord <- order(fit$lods,decreasing=TRUE)

> top30 <- ord[1:30]

> text(fit$Amean[top30],fit$coef[top30],labels=fit$genes[top30,"Name"],cex=0.8,col="blue")
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21.2 ApoAI Knockout Data: A Two-Sample Experiment

In this section we consider a case study where two RNA sources are compared through a
common reference RNA. The analysis of the log-ratios involves a two-sample comparison of
means for each gene.

In this example we assume that the data is available as an RGList in the data file
ApoAI.RData.

Background. The data is from a study of lipid metabolism by Callow et al (2000). The
apolipoprotein AI (ApoAI) gene is known to play a pivotal role in high density lipoprotein
(HDL) metabolism. Mice which have the ApoAI gene knocked out have very low HDL choles-
terol levels. The purpose of this experiment is to determine how ApoAI deficiency affects the
action of other genes in the liver, with the idea that this will help determine the molecular
pathways through which ApoAI operates.

Hybridizations. The experiment compared 8 ApoAI knockout mice with 8 normal C57BL/6
(”black six”) mice, the control mice. For each of these 16 mice, target mRNA was obtained
from liver tissue and labelled using a Cy5 dye. The RNA from each mouse was hybridized to
a separate microarray. Common reference RNA was labelled with Cy3 dye and used for all
the arrays. The reference RNA was obtained by pooling RNA extracted from the 8 control
mice.

Number of arrays Red Green
8 Normal “black six” mice Pooled reference
8 ApoAI knockout Pooled reference

This is an example of a single comparison experiment using a common reference. The fact
that the comparison is made by way of a common reference rather than directly as for the
swirl experiment makes this, for each gene, a two-sample rather than a single-sample setup.
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> library(limma)

> load("ApoAI.RData")

> objects()

[1] "RG"

> names(RG)

[1] "R" "G" "Rb" "Gb" "printer" "genes" "targets"

> RG$targets

FileName Cy3 Cy5

c1 a1koc1.spot Pool C57BL/6

c2 a1koc2.spot Pool C57BL/6

c3 a1koc3.spot Pool C57BL/6

c4 a1koc4.spot Pool C57BL/6

c5 a1koc5.spot Pool C57BL/6

c6 a1koc6.spot Pool C57BL/6

c7 a1koc7.spot Pool C57BL/6

c8 a1koc8.spot Pool C57BL/6

k1 a1kok1.spot Pool ApoAI-/-

k2 a1kok2.spot Pool ApoAI-/-

k3 a1kok3.spot Pool ApoAI-/-

k4 a1kok4.spot Pool ApoAI-/-

k5 a1kok5.spot Pool ApoAI-/-

k6 a1kok6.spot Pool ApoAI-/-

k7 a1kok7.spot Pool ApoAI-/-

k8 a1kok8.spot Pool ApoAI-/-

> MA <- normalizeWithinArrays(RG)

> cols <- MA$targets$Cy5

> cols[cols=="C57BL/6"] <- "blue"

> cols[cols=="ApoAI-/-"] <- "yellow"

> boxplot(MA$M~col(MA$M),names=rownames(MA$targets),col=cols,xlab="Mouse",ylab="M-values")

Since the common reference here is a pool of the control mice, we expect to see more differences
from the pool for the knock-out mice than for the control mice. In terms of the above plot,
this should translate into a wider range of M-values for the knock-out mice arrays than for
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the control arrays, and we do see this. Since the different arrays are not expected to have the
same range of M-values, between-array scale normalization of the M-values is not appropriate
here.

Now we can go on to estimate the fold change between the two groups. In this case the
design matrix has two columns. The coefficient for the second column estimates the parameter
of interest, the log-ratio between knockout and control mice.

> design <- cbind("Control-Ref"=1,"KO-Control"=MA$targets$Cy5=="ApoAI-/-")

> design

Control-Ref KO-Control

[1,] 1 0

[2,] 1 0

[3,] 1 0

[4,] 1 0

[5,] 1 0

[6,] 1 0

[7,] 1 0

[8,] 1 0

[9,] 1 1

[10,] 1 1

[11,] 1 1

[12,] 1 1

[13,] 1 1

[14,] 1 1

[15,] 1 1

[16,] 1 1

> fit <- lmFit(MA, design)

> fit$coef[1:5,]

Control-Ref KO-Control

[1,] -0.6595 0.6393

[2,] 0.2294 0.6552

[3,] -0.2518 0.3342

[4,] -0.0517 0.0405

[5,] -0.2501 0.2230

> fit <- eBayes(fit)

> options(digits=3)

> topTable(fit,coef=2,number=15,adjust="fdr")

GridROW GridCOL ROW COL NAME TYPE M t P.Value B

2149 2 2 8 7 ApoAI,lipid-Img cDNA -3.166 -23.98 3.05e-11 14.927

540 1 2 7 15 EST,HighlysimilartoA cDNA -3.049 -12.96 5.02e-07 10.813

5356 4 2 9 1 CATECHOLO-METHYLTRAN cDNA -1.848 -12.44 6.51e-07 10.448

4139 3 3 8 2 EST,WeaklysimilartoC cDNA -1.027 -11.76 1.21e-06 9.929

1739 2 1 7 17 ApoCIII,lipid-Img cDNA -0.933 -9.84 1.56e-05 8.192

2537 2 3 7 17 ESTs,Highlysimilarto cDNA -1.010 -9.02 4.22e-05 7.305

1496 1 4 15 5 est cDNA -0.977 -9.00 4.22e-05 7.290

4941 4 1 8 6 similartoyeaststerol cDNA -0.955 -7.44 5.62e-04 5.311

947 1 3 8 2 EST,WeaklysimilartoF cDNA -0.571 -4.55 1.77e-01 0.563

5604 4 3 1 18 cDNA -0.366 -3.96 5.29e-01 -0.553

4140 3 3 8 3 APXL2,5q-Img cDNA -0.420 -3.93 5.29e-01 -0.619

6073 4 4 5 4 estrogenrec cDNA 0.421 3.91 5.29e-01 -0.652

1337 1 4 7 14 psoriasis-associated cDNA -0.838 -3.89 5.29e-01 -0.687
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954 1 3 8 9 Caspase7,heart-Img cDNA -0.302 -3.86 5.30e-01 -0.757

563 1 2 8 17 FATTYACID-BINDINGPRO cDNA -0.637 -3.81 5.30e-01 -0.839

Notice that the top gene is ApoAI itself which is heavily down-regulated. Theoretically the
M-value should be minus infinity for ApoAI because it is the knockout gene. Several of the
other genes are closely related. The top eight genes here were confirmed by independent assay
subsequent to the microarray experiment to be differentially expressed in the knockout versus
the control line.

> volcanoplot(fit,coef=2,highlight=8,names=fit$genes$NAME,main="KO vs Control")

21.3 Ecoli Lrp Data: Affymetrix Data with Two Targets

The data are from experiments reported in Hung et al (2002) and are available from the www
site http://visitor.ics.uci.edu/genex/cybert/tutorial/index.html. The data is also
available from the ecoliLeucine data package available from the Bioconductor www site under
”Experimental Data”. Hung et al (2002) state that

The purpose of the work presented here is to identify the network of genes that are
differentially regulated by the global E. coli regulatory protein, leucine-responsive
regulatory protein (Lrp), during steady state growth in a glucose supplemented
minimal salts medium. Lrp is a DNA-binding protein that has been reported to
affect the expression of approximately 55 genes.

Gene expression in two E. coli bacteria strains, labelled lrp+ and lrp-, were compared using
eight Affymetrix ecoli chips, four chips each for lrp+ and lrp-.

The following code assumes that the data files for the eight chips are in your current
working directory.
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> dir()

[1] "Ecoli.CDF" "nolrp_1.CEL" "nolrp_2.CEL"

[4] "nolrp_3.CEL" "nolrp_4.CEL" "wt_1.CEL"

[7] "wt_2.CEL" "wt_3.CEL" "wt_4.CEL"

The data is read and normalized using the affy package. The package ecolicdf must
also be installed, otherwise the rma() function will attempt to download and install it for
you—without giving you to opportunity to veto the download.

> library(limma)

> library(affy)

Welcome to Bioconductor

Vignettes contain introductory material. To view,

simply type: openVignette()

For details on reading vignettes, see

the openVignette help page.

> Data <- ReadAffy()

> eset <- rma(Data)

Background correcting

Normalizing

Calculating Expression

> pData(eset)

sample

nolrp_1.CEL 1

nolrp_2.CEL 2

nolrp_3.CEL 3

nolrp_4.CEL 4

wt_1.CEL 5

wt_2.CEL 6

wt_3.CEL 7

wt_4.CEL 8

Now we consider differential expression between the lrp+ and lrp- strains.

> strain <- c("lrp-","lrp-","lrp-","lrp-","lrp+","lrp+","lrp+","lrp+")

> design <- model.matrix(~factor(strain))

> colnames(design) <- c("lrp-","lrp+vs-")

> design

lrp- lrp+vs-

1 1 0

2 1 0

3 1 0

4 1 0

5 1 1

6 1 1

7 1 1

8 1 1

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$"factor(strain)"

[1] "contr.treatment"
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The first coefficient measures log2-expression of each gene in the lrp- strain. The second
coefficient measures the log2-fold change of lrp+ over lrp-, i.e., the log-fold change induced by
lrp.

> fit <- lmFit(eset, design)

> fit <- eBayes(fit)

> options(digits=2)

> topTable(fit, coef=2, n=40, adjust="fdr")

ProbeSetID M A t P.Value B
4282 IG_821_1300838_1300922_fwd_st -3.32 12.4 -23.1 5.3e-05 8.017
5365 serA_b2913_st 2.78 12.2 15.8 6.0e-04 6.603
1389 gltD_b3213_st 3.03 10.9 13.3 1.6e-03 5.779
4625 lrp_b0889_st 2.30 9.3 11.4 4.0e-03 4.911
1388 gltB_b3212_st 3.24 10.1 11.1 4.0e-03 4.766
4609 livK_b3458_st 2.35 9.9 10.8 4.0e-03 4.593
4901 oppB_b1244_st -2.91 10.7 -10.6 4.0e-03 4.504
4903 oppD_b1246_st -1.94 10.4 -10.5 4.0e-03 4.434
5413 sodA_b3908_st 1.50 10.3 9.7 6.5e-03 3.958
4900 oppA_b1243_st -2.98 13.0 -9.1 9.2e-03 3.601
5217 rmf_b0953_st -2.71 13.6 -9.0 9.3e-03 3.474
7300 ytfK_b4217_st -2.64 11.1 -8.9 9.3e-03 3.437
5007 pntA_b1603_st 1.58 10.1 8.3 1.4e-02 3.019
4281 IG_820_1298469_1299205_fwd_st -2.45 10.7 -8.1 1.6e-02 2.843
4491 ilvI_b0077_st 0.95 10.0 7.4 2.9e-02 2.226
5448 stpA_b2669_st 1.79 10.0 7.4 2.9e-02 2.210
611 b2343_st -2.12 10.8 -7.1 3.4e-02 2.028
5930 ybfA_b0699_st -0.91 10.5 -7.0 3.5e-02 1.932
1435 grxB_b1064_st -0.91 9.8 -6.9 3.8e-02 1.810
4634 lysU_b4129_st -3.30 9.3 -6.9 3.9e-02 1.758
4829 ndk_b2518_st 1.07 11.1 6.7 4.3e-02 1.616
2309 IG_1643_2642304_2642452_rev_st 0.83 9.6 6.7 4.3e-02 1.570
4902 oppC_b1245_st -2.15 10.7 -6.3 5.9e-02 1.238
4490 ilvH_b0078_st 1.11 9.9 5.9 8.8e-02 0.820
1178 fimA_b4314_st 3.40 11.7 5.9 8.8e-02 0.743
6224 ydgR_b1634_st -2.35 9.8 -5.8 8.8e-02 0.722
4904 oppF_b1247_st -1.46 9.9 -5.8 8.8e-02 0.720
792 b3914_st -0.77 9.5 -5.7 1.0e-01 0.565
5008 pntB_b1602_st 1.47 12.8 5.6 1.0e-01 0.496
4610 livM_b3456_st 1.04 8.5 5.5 1.1e-01 0.376
5097 ptsG_b1101_st 1.16 12.2 5.5 1.1e-01 0.352
4886 nupC_b2393_st 0.79 9.6 5.5 1.1e-01 0.333
4898 ompT_b0565_st 2.67 10.5 5.4 1.2e-01 0.218
5482 tdh_b3616_st -1.61 10.5 -5.3 1.3e-01 0.092
1927 IG_13_14080_14167_fwd_st -0.55 8.4 -5.3 1.3e-01 0.076
6320 yeeF_b2014_st 0.88 9.9 5.3 1.3e-01 0.065
196 atpG_b3733_st 0.60 12.5 5.2 1.4e-01 -0.033
954 cydB_b0734_st -0.76 11.0 -5.0 1.8e-01 -0.272
1186 fimI_b4315_st 1.15 8.3 5.0 1.8e-01 -0.298
4013 IG_58_107475_107629_fwd_st -0.49 10.4 -4.9 2.0e-01 -0.407

The column M gives the log2-fold change while the column A gives the average log2-intensity
for the probe-set. Positive M-values mean that the gene is up-regulated in lrp+, negative
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values mean that it is repressed.
It is interesting to compare this table with Tables III and IV in Hung et al (2002). Note

that the top-ranked gene is an intergenic region (IG) tRNA gene. The knock-out gene itself
is in position four. Many of the genes in the above table, including the ser, glt, liv, opp, lys,
ilv and fim families, are known targets of lrp.

21.4 Estrogen Data: A 2x2 Factorial Experiment with Affymetrix
Arrays

This data is from the estrogen package on Bioconductor. A subset of the data is also analysed
in the factDesign package vignette. To repeat this case study you will need to have the R
packages affy, estrogen and hgu95av2cdf installed.

The data gives results from a 2x2 factorial experiment on MCF7 breast cancer cells using
Affymetrix HGU95av2 arrays. The factors in this experiment were estrogen (present or absent)
and length of exposure (10 or 48 hours). The aim of the study is the identify genes which
respond to estrogen and to classify these into early and late responders. Genes which respond
early are putative direct-target genes while those which respond late are probably downstream
targets in the molecular pathway.

First load the required packages:

> library(limma)

> library(affy)

Welcome to Bioconductor

Vignettes contain introductory material. To view,

simply type: openVignette()

For details on reading vignettes, see

the openVignette help page.

> library(hgu95av2cdf)

The data files are contained in the extdata directory of the estrogen package:

> datadir <- file.path(.find.package("estrogen"),"extdata")

> dir(datadir)

[1] "00Index" "bad.cel" "high10-1.cel" "high10-2.cel" "high48-1.cel"

[6] "high48-2.cel" "low10-1.cel" "low10-2.cel" "low48-1.cel" "low48-2.cel"

[11] "phenoData.txt"

The targets file is called phenoData.txt. We see there are two arrays for each experimental
condition, giving a total of 8 arrays.

> targets <- readTargets("phenoData.txt",path=datadir,sep="",row.names="filename")

> targets

filename estrogen time.h

low10-1 low10-1.cel absent 10

low10-2 low10-2.cel absent 10

high10-1 high10-1.cel present 10

high10-2 high10-2.cel present 10

low48-1 low48-1.cel absent 48

low48-2 low48-2.cel absent 48
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high48-1 high48-1.cel present 48

high48-2 high48-2.cel present 48

Now read the cel files into an AffyBatch object and normalize using the rma() function
from the affy package:

> ab <- ReadAffy(filenames=targets$filename, celfile.path=datadir)

> eset <- rma(ab)

Background correcting

Normalizing

Calculating Expression

There are many ways to construct a design matrix for this experiment. Given that we are
interested in the early and late estrogen responders, we can choose a parametrization which
includes these two contrasts.

> treatments <- factor(c(1,1,2,2,3,3,4,4),labels=c("e10","E10","e48","E48"))

> contrasts(treatments) <- cbind(Time=c(0,0,1,1),E10=c(0,1,0,0),E48=c(0,0,0,1))

> design <- model.matrix(~treatments)

> colnames(design) <- c("Intercept","Time","E10","E48")

The second coefficient picks up the effect of time in the absence of estrogen. The third
and fourth coefficients estimate the log2-fold change for estrogen at 10 hours and 48 hours
respectively.

> fit <- lmFit(eset,design)

We are only interested in the estrogen effects, so we choose a contrast matrix which picks
these two coefficients out:

> cont.matrix <- cbind(E10=c(0,0,1,0),E48=c(0,0,0,1))

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

We can examine which genes respond to estrogen at either time using the moderated F-
statistics on 2 degrees of freedom. The moderated F p-value is stored in the component
fit2$F.p.value.

What p-value cutoff should be used? One way to decide which changes are significant for
each gene would be to use Benjamini and Hochberg’s method to control the false discovery
rate across all the genes and both tests:

> results <- decideTests(fit2, method="global")

Another method would be to adjust the F-test p-values rather than the t-test p-values:

> results <- decideTests(fit2, method="nestedF")

Here we use a more conservative method which depends far less on distributional assumptions,
which is to make use of control and spike-in probe-sets which theoretically should not be
differentially-expressed. The smallest p-value amongst these contols turns out to be about
0.00014:
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> i <- grep("AFFX",geneNames(eset))

> summary(fit2$F.p.value[i])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0001391 0.1727000 0.3562000 0.4206000 0.6825000 0.9925000

So a cutoff p-value of 0.0001, say, would conservatively avoid selecting any of the control
probe-sets as differentially expressed:

> results <- classifyTestsF(fit2, p.value=0.0001)

> summary(results)

E10 E48
-1 40 76
0 12469 12410
1 116 139

> table(E10=results[,1],E48=results[,2])

E48
E10 -1 0 1
-1 29 11 0
0 47 12370 52
1 0 29 87

> vennDiagram(results,include="up")

> vennDiagram(results,include="down")
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We see that 87 genes were up regulated at both 10 and 48 hours, 29 only at 10 hours and 52
only at 48 hours. Also, 29 genes were down-regulated throughout, 11 only at 10 hours and 47
only at 48 hours. No genes were up at one time and down at the other.

topTable gives a detailed look at individual genes. The leading genes are clearly significant,
even using the default p-value adjustment method, which is the highly conservative Holm’s
method.

> options(digits=3)

> topTable(fit2,coef="E10",n=20)

ID M A t P.Value B
9735 39642_at 2.94 7.88 23.7 5.99e-05 9.97
12472 910_at 3.11 9.66 23.6 6.26e-05 9.94
1814 31798_at 2.80 12.12 16.4 1.29e-03 7.98
11509 41400_at 2.38 10.04 16.2 1.41e-03 7.92
10214 40117_at 2.56 9.68 15.7 1.86e-03 7.70
953 1854_at 2.51 8.53 15.2 2.46e-03 7.49
9848 39755_at 1.68 12.13 15.1 2.59e-03 7.45
922 1824_s_at 1.91 9.24 14.9 2.86e-03 7.37
140 1126_s_at 1.78 6.88 13.8 5.20e-03 6.89
580 1536_at 2.66 5.94 13.3 7.30e-03 6.61
12542 981_at 1.82 7.78 13.1 8.14e-03 6.52
3283 33252_at 1.74 8.00 12.6 1.12e-02 6.25
546 1505_at 2.40 8.76 12.5 1.20e-02 6.19
4405 34363_at -1.75 5.55 -12.2 1.44e-02 6.03
985 1884_s_at 2.80 9.03 12.1 1.59e-02 5.95
6194 36134_at 2.49 8.28 11.8 1.90e-02 5.79
7557 37485_at 1.61 6.67 11.4 2.50e-02 5.55
1244 239_at 1.57 11.25 10.4 5.14e-02 4.90
8195 38116_at 2.32 9.51 10.4 5.16e-02 4.90
10634 40533_at 1.26 8.47 10.4 5.31e-02 4.87

> topTable(fit2,coef="E48",n=20)
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ID M A t P.Value B
12472 910_at 3.86 9.66 29.2 1.04e-05 11.61
1814 31798_at 3.60 12.12 21.1 1.62e-04 9.89
953 1854_at 3.34 8.53 20.2 2.29e-04 9.64
8195 38116_at 3.76 9.51 16.9 1.02e-03 8.48
8143 38065_at 2.99 9.10 16.2 1.42e-03 8.21
9848 39755_at 1.77 12.13 15.8 1.72e-03 8.05
642 1592_at 2.30 8.31 15.8 1.76e-03 8.03
11509 41400_at 2.24 10.04 15.3 2.29e-03 7.81
3766 33730_at -2.04 8.57 -15.1 2.48e-03 7.74
732 1651_at 2.97 10.50 14.8 3.02e-03 7.57
8495 38414_at 2.02 9.46 14.6 3.36e-03 7.48
1049 1943_at 2.19 7.60 14.0 4.69e-03 7.18
10214 40117_at 2.28 9.68 14.0 4.79e-03 7.16
10634 40533_at 1.64 8.47 13.5 6.24e-03 6.93
9735 39642_at 1.61 7.88 13.0 8.46e-03 6.65
4898 34851_at 1.96 9.96 12.8 9.47e-03 6.55
922 1824_s_at 1.64 9.24 12.8 1.00e-02 6.50
6053 35995_at 2.76 8.87 12.7 1.05e-02 6.46
12455 893_at 1.54 10.95 12.7 1.06e-02 6.45
10175 40079_at -2.41 8.23 -12.6 1.09e-02 6.42

21.5 Weaver Mutant Data: A 2x2 Factorial Experiment with Two-
Color Data

This case study considers a more involved analysis in which the sources of RNA have a factorial
structure.

Background. This is a case study examining the development of certain neurons in wild-type
and weaver mutant mice from Diaz et al (2002). The weaver mutant affects cerebellar granule
neurons, the most numerous cell-type in the central nervous system. Weaver mutant mice are
characterized by a weaving gait. Granule cells are generated in the first postnatal week in the
external granule layer of the cerebellum. In normal mice, the terminally differentiated granule
cells migrate to the internal granule layer but in mutant mice the cells die before doing so,
meaning that the mutant mice have strongly reduced numbers of cells in the internal granule
layer. The expression level of any gene which is specific to mature granule cells, or is expressed
in response to granule cell derived signals, is greatly reduced in the mutant mice.

Tissue dissection and RNA preparation. At each time point (P11 = 11 days postnatal
and P21 = 21 days postnatal) cerebella were isolated from two wild-type and two mutant
littermates and pooled for RNA isolation. RNA was then divided into aliquots and labelled
before hybridizing to the arrays. (This means that different hybridizations are biologically
related through using RNA from the same mice, although we will ignore this here. See Yang
and Speed (2002) for a detailed discussion of this issue in the context of this experiment.)

Hybridizations. There are four different treatment combinations, P11wt, P11mt, P21wt
and P21mt, which might think of as a 2x2 factorial structure. We consider ten arrays in
total. There are six arrays comparing the four different RNA sources to a common reference,
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which was a pool of RNA from all the time points, and four arrays making direct comparisons
between the four treatment combinations.

First read in the data. We assume that the data is an directory called c:/Weaver. We first
read in the targets frame, and then read the intensity data using file names recorded in the
targets file. The data was produced using SPOT image analysis software and is stored in the
subdirectory /spot. Notice that a spot quality weight function as been set. For these arrays
the median spot area is just over 50 pixels. The spot quality function has been set so that
any spot with an area less than 50 pixels will get reduced weight, so that a hypothetical spot
of zero area would get zero weight.

> library(limma)

> setwd("C:/Weaver")

> targets <- readTargets("targets.txt")

> targets

FileName Tissue Mouse Cy5 Cy3
cbmut.3 cbmut.3.spot Cerebellum Weaver P11wt Pool
cbmut.4 cbmut.4.spot Cerebellum Weaver P11mt Pool
cbmut.5 cbmut.5.spot Cerebellum Weaver P21mt Pool
cbmut.6 cbmut.6.spot Cerebellum Weaver P21wt Pool
cbmut.15 cbmut.15.spot Cerebellum Weaver P21wt Pool
cbmut.16 cbmut.16.spot Cerebellum Weaver P21mt Pool
cb.1 cb.1.spot Cerebellum Weaver P11wt P11mt
cb.2 cb.2.spot Cerebellum Weaver P11mt P21mt
cb.3 cb.3.spot Cerebellum Weaver P21mt P21wt
cb.4 cb.4.spot Cerebellum Weaver P21wt P11wt

> wtfun <- function(x) pmax(x$area/50, 1)

> RG <- read.maimages(targets$FileName, source = "spot", path = "spot", wt.fun = wtfun)

Read spot/cbmut.3.spot
Read spot/cbmut.4.spot
Read spot/cbmut.5.spot
Read spot/cbmut.6.spot
Read spot/cbmut.15.spot
Read spot/cbmut.16.spot
Read spot/cb.1.spot
Read spot/cb.2.spot
Read spot/cb.3.spot
Read spot/cb.4.spot

The SPOT software does not store probe IDs in the output files, so we need to read in the
ID and annotation information separately. We also read in a spottypes file and set a range of
control spots.

> RG$genes <- read.delim("genelist.txt", header = TRUE, as.is = TRUE)

> RG$printer <- list(ngrid.r = 8, ngrid.c = 4, nspot.r = 25, nspot.c = 24)

> spottypes <- readSpotTypes("spottypes.txt")

> spottypes
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SpotType ID Name col cex
1 Riken * * black 0.2
2 Custom Control * black 1.0
3 Buffer Control 3x SSC yellow 1.0
4 CerEstTitration Control cer est \\(* lightblue 1.0
5 LysTitration Control Lys \\(* orange 1.0
6 PheTitration Control Phe \\(* orange 1.0
7 RikenTitration Control Riken est \\(* blue 1.0
8 ThrTitration Control Thr \\(* orange 1.0
9 18S Control 18S \\(0.15ug/ul\\) pink 1.0
10 GAPDH Control GAPDH \\(0.15 ug/ul\\) red 1.0
11 Lysine Control Lysine \\(0.2 ug/ul\\) magenta 1.0
12 Threonine Control Threonine \\(0.2ug/ul\\) lightgreen 1.0
13 Tubulin Control Tubulin \\(0.15 ug/ul\\) green 1.0

> RG$genes$Status <- controlStatus(spottypes, RG)

Matching patterns for: ID Name
Found 19200 Riken
Found 2304 Custom
Found 710 Buffer
Found 192 CerEstTitration
Found 224 LysTitration
Found 260 PheTitration
Found 160 RikenTitration
Found 224 ThrTitration
Found 64 18S
Found 64 GAPDH
Found 32 Lysine
Found 32 Threonine
Found 64 Tubulin
Setting attributes: values col cex

> plotMA(RG,array=9,xlim=c(4,15.5))
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Here Buffer is an obvious negative control while 18S, GAPDH, Lysine, Threonine and Tubulin
are single-gene positive controls, sometime called house-keeping genes. RikenTitration is a
titration series of a pool of the entire Riken library, and can be reasonably expected to be
non-differentially expressed. CerEstTitration is a titration of a pool of a cerebellum EST
library. This will show higher expression in later mutant tissues. The Lys, Phe and Thr
series are single-gene titration series which were not spike-in in this case and can be treated
as negative controls.

Now normalize the data. Because the Riken titration library, being based on a pool of a
large number of non-specific genes, should not be differentially expressed, we up-weight these
spots in the print-tip normalization step:

> w <- modifyWeights(RG$weights, RG$genes$Status, "RikenTitration", 2)

> MA <- normalizeWithinArrays(RG, weights = w)

Now fit a linear model to the data. Because of the composite design, with some common
reference arrays and some direct comparison arrays, the simplest method is to use a group-
mean parametrization with all RNA samples compared back to the Pool.

> design <- modelMatrix(targets, ref = "Pool")

Found unique target names:
P11mt P11wt P21mt P21wt Pool

> design

P11mt P11wt P21mt P21wt
cbmut.3 0 1 0 0
cbmut.4 1 0 0 0
cbmut.5 0 0 1 0
cbmut.6 0 0 0 1
cbmut.15 0 0 0 1
cbmut.16 0 0 1 0
cb.1 -1 1 0 0
cb.2 1 0 -1 0
cb.3 0 0 1 -1
cb.4 0 -1 0 1

All the control spots are removed before fitting the linear model:

> isGene <- MA$genes$Status == "Riken"

> fit <- lmFit(MA[isGene, ], design)

We now extract all possible comparisons of interest as contrasts. We look for the mutant
vs wt comparisons at 11 and 21 days, the time effects for mutant and wt, and the interaction
terms:

> cont.matrix <- makeContrasts(

+ WT11.MT11=P11mt-P11wt,

+ WT21.MT21=P21mt-P21wt,

+ WT11.WT21=P21wt-P11wt,
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+ MT11.MT21=P21mt-P11mt,

+ Int=(P21mt-P11mt)-(P11mt-P11wt),

+ levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

Adjustment for multiple testing, with Benjamini and Hochberg’s method applied to the F-test
p-values across genes with 5% false discovery rate, and nesting F-testing used within contrasts,
leads to the following:

> results <- decideTests(fit2, method = "nestedF")

> summary(results)

WT11.MT11 WT21.MT21 WT11.WT21 MT11.MT21 Int
-1 2 30 135 136 43
0 16886 16786 16648 16573 16769
1 8 80 113 187 84

There are 187 genes up and 136 genes down in mutant at 21 days vs 11 days. There are 84
genes which respond more up in the mutant than the wt, and 43 genes which respond more
down in the mutant than the wt. A heatdiagram shows that the genes are mostly responding
in the same direction in the mutant and wt, but to different degrees:

> heatDiagram(results, fit2$coef, primary = "Int")
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22 Within-Array Replicate Spots

In this section we consider a case study in which all genes (ESTs and controls) are printed
more than once on the array. This means that there is both within-array and between-array
replication for each gene. The structure of the experiment is therefore essentially a randomized
block experiment for each gene. The approach taken here is to estimate a common correlation
for all the genes for between within-array duplicates. The theory behind the approach is
explained in Smyth, Michaud and Scott (2003). This approach assumes that all genes are
replicated the same number of times on the array and that the spacing between the replicates
is entirely regular.
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22.1 Example. Bob Mutant Data

In this example we assume that the data is available as an RG list.

Background. This data is from a study of transcription factors critical to B cell maturation
by Lynn Corcoran and Wendy Dietrich at the WEHI. Mice which have a targeted mutation in
the Bob (OBF-1) transcription factor display a number of abnormalities in the B lymphocyte
compartment of the immune system. Immature B cells that have emigrated from the bone
marrow fail to differentiate into full fledged B cells, resulting in a notable deficit of mature B
cells.

Arrays. Arrays were printed with expressed sequence tags (ESTs) from the National Institute
of Aging 15k mouse clone library, plus a range of positive, negative and calibration controls.
The arrays were printed using a 48 tip print head and 26x26 spots in each tip group. Data
from 24 of the tip groups are given here. Every gene (ESTs and controls) was printed twice
on each array.

Hybridizations. A retrovirus was used to add Bob back to a Bob deficient cell line. Two
RNA sources were compared using 2 dye-swap pairs of microarrays. One RNA source was
obtained from the Bob deficient cell line after the retrovirus was used to add GFP (”green
fluorescent protein”, a neutral protein). The other RNA source was obtained after adding
both GFP and Bob protein. RNA from Bob+GFP was labelled with Cy5 in arrays 2 and 4,
and with Cy3 in arrays 1 and 4.

> objects()

[1] "design" "gal" "layout" "RG"

> design

[1] -1 1 -1 1

> gal[1:40,]

Library Name

1 Control cDNA1.500

2 Control cDNA1.500

3 Control Printing.buffer

4 Control Printing.buffer

5 Control Printing.buffer

6 Control Printing.buffer

7 Control Printing.buffer

8 Control Printing.buffer

9 Control cDNA1.500

10 Control cDNA1.500

11 Control Printing.buffer

12 Control Printing.buffer

13 Control Printing.buffer

14 Control Printing.buffer

15 Control Printing.buffer

16 Control Printing.buffer

17 Control cDNA1.500

18 Control cDNA1.500

19 Control Printing.buffer

20 Control Printing.buffer
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21 Control Printing.buffer

22 Control Printing.buffer

23 Control Printing.buffer

24 Control Printing.buffer

25 Control cDNA1.500

26 Control cDNA1.500

27 NIA15k H31

28 NIA15k H31

29 NIA15k H32

30 NIA15k H32

31 NIA15k H33

32 NIA15k H33

33 NIA15k H34

34 NIA15k H34

35 NIA15k H35

36 NIA15k H35

37 NIA15k H36

38 NIA15k H36

39 NIA15k H37

40 NIA15k H37

Although there are only four arrays, we have a total of eight spots for each gene, and
more for the controls. Naturally the two M-values obtained from duplicate spots on the same
array are highly correlated. The problem is how to make use of the duplicate spots in the
best way. The approach taken here is to estimate the spatial correlation between the adjacent
spots using REML and then to conduct the usual analysis of the arrays using generalized least
squares.

First normalize the data using print-tip loess regression.

> MA <- normalizeWithinArrays(RG,layout)

Now estimate the spatial correlation. We estimate a correlation term by REML for each
gene, and then take a trimmed mean on the atanh scale to estimate the overall correlation.
This command takes a lot of time, perhaps as much as an hour for a series of arrays.

> cor <- duplicateCorrelation(MA,design,ndups=2) # A slow computation!

> cor$consensus.correlation

[1] 0.571377

> boxplot(cor$all.correlations)
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> fit <- lmFit(MA,design,ndups=2,correlation=0.571377)

> fit <- eBayes(fit)

> topTable(fit,n=30,adjust="fdr")

Name M t P.Value B
1 H34599 0.4035865 13.053838 0.0004860773 7.995550
2 H31324 -0.5196599 -12.302094 0.0004860773 7.499712
3 H33309 0.4203320 12.089742 0.0004860773 7.352862
4 H3440 0.5678168 11.664229 0.0004860773 7.049065
5 H36795 0.4600335 11.608550 0.0004860773 7.008343
6 H3121 0.4408640 11.362917 0.0004860773 6.825927
7 H36999 0.3806754 11.276571 0.0004860773 6.760715
8 H3132 0.3699805 11.270201 0.0004860773 6.755881
9 H32838 1.6404839 11.213454 0.0004860773 6.712681
10 H36207 -0.3930972 -11.139510 0.0004860773 6.656013
11 H37168 0.3909476 10.839880 0.0005405097 6.421932
12 H31831 -0.3738452 -10.706775 0.0005405097 6.315602
13 H32014 0.3630416 10.574797 0.0005405097 6.208714
14 H34471 -0.3532587 -10.496483 0.0005405097 6.144590
15 H37558 0.5319192 10.493157 0.0005405097 6.141856
16 H3126 0.3849980 10.467091 0.0005405097 6.120389
17 H34360 -0.3409371 -10.308779 0.0005852911 5.988745
18 H36794 0.4716704 10.145670 0.0006399135 5.850807
19 H3329 0.4125222 10.009042 0.0006660758 5.733424
20 H35017 0.4337911 9.935639 0.0006660758 5.669656
21 H32367 0.4092668 9.765338 0.0006660758 5.519781
22 H32678 0.4608290 9.763809 0.0006660758 5.518423
23 H31232 -0.3717084 -9.758581 0.0006660758 5.513778
24 H3111 0.3693533 9.745794 0.0006660758 5.502407
25 H34258 0.2991668 9.722656 0.0006660758 5.481790
26 H32159 0.4183633 9.702614 0.0006660758 5.463892
27 H33192 -0.4095032 -9.590227 0.0007130533 5.362809
28 H35961 -0.3624470 -9.508868 0.0007205823 5.288871
29 H36025 0.4265827 9.503974 0.0007205823 5.284403
30 H3416 0.3401763 9.316136 0.0008096722 5.111117

> volcanoplot(fit)
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23 Using Objects from the marray Package

The package marray is a well known R package for pre-processing of two-color microarray
data. Marray provides functions for reading, normalization and graphical display of data.
Marray and limma are both descendants of the earlier and path-breaking SMA package avail-
able from http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html

but limma has maintained and built upon the original data structures whereas marray has
converted to a fully formal data class representation. For this reason, Limma is backwardly
compatible with SMA while marray is not.

Normalization functions in marray focus on a flexible approach to location and scale nor-
malization of M-values, rather than the within and between-array approach of limma. Marray
provides some normalization methods which are not in limma including 2-D loess normaliza-
tion and print-tip-scale normalization. Although there is some overlap between the normal-
ization functions in the two packages, both providing print-tip loess normalization, the two
approaches are largely complementary. Marray also provides highly developed functions for
graphical display of two-color microarray data.

Read functions in marray produce objects of class marrayRaw while normalization produces
objects of class marrayNorm. Objects of these classes may be converted to and from limma
data objects using the convert package. marrayRaw objects may be converted to RGList objects
and marrayNorm objects to MAList objects using the as function. For example, if Data is an
marrayNorm object then

> library(convert)

> MA <- as(Data, "MAList")

converts to an MAList object.
marrayNorm objects can also be used directly in limma without conversion, and this is

generally recommended. If Data is an marrayNorm object, then

> fit <- lmFit(Data, design)

fits a linear model to Data as it would to an MAList object. One difference however is that the
marray read functions tend to populate the maW slot of the marrayNorm object with qualitative
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spot quality flags rather than with quantitative non-negative weights, as expected by limma.
If this is so then one may need

> fit <- lmFit(Data, design, weights=NULL)

to turn off use of the spot quality weights.

24 Between-Array Normalization of Two-Color Arrays

This section explores some of the methods available for between-array normalization of two-
color arrays. A feature which distinguishes most of these methods from within-array norml-
ization is the focus on the individual red and green intensity values rather than merely on the
log-ratios. These methods might therefore be called individual channel or separate channel
normalization methods. Individual channel normalization is typically a prerequisite to indi-
vidual channel analysis methods such as that provided by lmscFit(). Further discussion of
the issues involved is given by Yang and Thorne (2003). The ApoAI data set from Section 21.2
will be used to illustrate these methods. We assume that the the ApoAI data has been loaded
and background corrected as follows:

> load("ApoAI.RData")

> RG.b <-backgroundCorrect(RG,method="minimum")

This section shows how to reproduce some of the results given in Yang and Thorne (2003).
plotDensities displays smoothed empirical densities for the individual green and red chan-

nels on all the arrays. Without any normalization there is considerable variation between both
channels and between arrays:

> plotDensities(RG.b)
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After loess normalization of the M-values for each array the red and green distributions be-
come essentially the same for each array, although there is still considerable variation between
arrays:

> MA.p <-normalizeWithinArrays(RG.b)

> plotDensities(MA.p)

Loess normalization doesn’t affect the A-values. Applying quantile normalization to the
A-values makes the distributions essentially the same across arrays as well as channels:

> MA.pAq <- normalizeBetweenArrays(MA.p, method="Aquantile")

> plotDensities(MA.pAq)
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Applying quantile normalization direclty to the individual red and green intensities pro-
duces a similar result but is somewhat noisier:

> MA.q <- normalizeBetweenArrays(RG.b, method="quantile")

> plotDensities(MA.q, col="black")

Warning message:
number of groups=2 not equal to number of col in: plotDensities(MA.q, col = "black")

There are other between-array normalization methods not explored here. For example
normalizeBetweenArrays with method="vsn" gives an interface to the variance-stabilizing nor-
malization methods of the vsn package.
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A Conventions

Where possible, limma tries to use the convention that class names are in upper CamelCase,
i.e., the first letter of each word is capitalized, while function names are in lower camelCase,
i.e., first word is lowercase. When periods appear in function names, the first word should be
an action while the second word is the name of a type of object on which the function acts.
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B Software projects using limma

The limma package is used as a building block or as the underlying computational engine by
a number of software projects designed to provide user-interfaces for microarray data analysis
[5, 1, 3, 2].
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individual nematodes. Aging Cell 3, 111–124. doi:10.1111/j.1474-9728.2004.00095.x On-
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