
MCMC Package Example

Charles J. Geyer

April 4, 2005

This is an example of using the mcmc package in R. The problem comes
from a take-home question on a (take-home) PhD qualifying exam (School of
Statistics, University of Minnesota).

Simulated data for the problem are in the file logit.txt. There are five
variables in the data set, the response y and four predictors, x1, x2, x3, and x4.

A frequentist analysis for the problem is done by the following R statements

> foo <- read.table(url("http://www.stat.umn.edu/geyer/PhD/F03/logit.txt"),

+ header = TRUE)

> out <- glm(y ~ x1 + x2 + x3 + x4, data = foo,

+ family = binomial())

> summary(out)

Call:
glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(), data = foo)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7461 -0.6907 0.1540 0.7041 2.1943

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.6328 0.3007 2.104 0.03536 *
x1 0.7390 0.3616 2.043 0.04100 *
x2 1.1137 0.3627 3.071 0.00213 **
x3 0.4781 0.3538 1.351 0.17663
x4 0.6944 0.3989 1.741 0.08172 .

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 137.628 on 99 degrees of freedom
Residual deviance: 87.668 on 95 degrees of freedom
AIC: 97.668

1

Number of Fisher Scoring iterations: 6

But this problem isn’t about that frequentist analysis, we want a Bayesian
analysis. For our Bayesian analysis we assume the same data model as the
frequentist, and we assume the prior distribution of the five parameters (the
regression coefficients) makes them independent and identically normally dis-
tributed with mean 0 and standard deviation 2.

The log unnormalized posterior (log likelihood plus log prior) density for
this model is calculated by the following R function (given the preceding data
definitions)

> x <- foo

> x$y <- NULL

> x <- as.matrix(x)

> x <- cbind(1, x)

> dimnames(x) <- NULL

> y <- foo$y

> lupost <- function(beta, x, y) {

+ eta <- x %*% beta

+ p <- 1/(1 + exp(-eta))

+ logl <- sum(log(p[y == 1])) + sum(log(1 -

+ p[y == 0]))

+ return(logl + sum(dnorm(beta, 0, 2, log = TRUE)))

+ }

With those definitions in place, the following code runs the Metropolis algo-
rithm to simulate the posterior.

> library(mcmc)

> set.seed(42)

> beta.init <- as.numeric(coefficients(out))

> out <- metrop(lupost, beta.init, 1000, x = x,

+ y = y)

> names(out)

[1] "accept" "batch" "initial"
[4] "final" "initial.seed" "final.seed"
[7] "time" "lud" "nbatch"
[10] "blen" "nspac" "scale"

> out$accept

[1] 0.008

The output is in the component out$batch returned by the metrop function.
We’ll look at it presently, but first we need to adjust the proposal to get a higher
acceptance rate (out$accept). It is generally accepted (Gelman, Roberts, and

2

Gilks, 1996) that an acceptance rate of about 20% is right, although this rec-
ommendation is based on the asymptotic analysis of a toy problem (simulating
a multivariate normal distribution) for which one would never use MCMC and
is very unrepresentative of difficult MCMC applications.

Geyer and Thompson (1995) came to a similar conclusion, that a 20% accep-
tance rate is about right, in a very different situation. But they also warned that
a 20% acceptance rate could be very wrong and produced an example where a
20% acceptance rate was impossible and attempting to reduce the acceptance
rate below 70% would keep the sampler from ever visiting part of the state space.
So the 20% magic number must be considered like other rules of thumb we teach
in intro courses (like n > 30 means means normal approximation is valid). We
know these rules of thumb can fail. There are examples in the literature where
they do fail. We keep repeating them because we want something simple to tell
beginners, and they are all right for some problems.

Be that as it may, we try for 20%.

> out <- metrop(out, scale = 0.1, x = x, y = y)

> out$accept

[1] 0.739

> out <- metrop(out, scale = 0.3, x = x, y = y)

> out$accept

[1] 0.371

> out <- metrop(out, scale = 0.5, x = x, y = y)

> out$accept

[1] 0.148

> out <- metrop(out, scale = 0.4, x = x, y = y)

> out$accept

[1] 0.209

O. K. That does it for the acceptance rate. So let’s do a longer run and look
at the results.

> out <- metrop(out, nbatch = 10000, x = x, y = y)

> out$accept

[1] 0.2345

> out$time

[1] 1.22 0.49 1.70 0.00 0.00

Figure 1 (page 4) shows the time series plot made by the R statement

3

0.
0

0.
5

1.
0

1.
5

S
er

ie
s

1

−
0.

5
0.

5
1.

5
2.

5

S
er

ie
s

2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 2000 4000 6000 8000 10000

S
er

ie
s

3

Time

−
0.

5
0.

0
0.

5
1.

0
1.

5

S
er

ie
s

4

0.
0

0.
5

1.
0

1.
5

2.
0

0 2000 4000 6000 8000 10000

S
er

ie
s

5

Time

ts(out$batch)

Figure 1: Time series plot of MCMC output.

4

0 10 20 30

0.
0

0.
6

Lag
A

C
F

Series 1

0 10 20 30

0.
0

0.
6

Lag

Srs1 & Srs2

0 10 20 30

0.
0

0.
6

Lag

Srs1 & Srs3

0 10 20 30

0.
0

0.
6

Lag

Srs1 & Srs4

0 10 20 30

0.
0

0.
6

Lag

Srs1 & Srs5

−30 −15 0

0.
0

0.
6

Lag

A
C

F

Srs2 & Srs1

0 10 20 30

0.
0

0.
6

Lag

Series 2

0 10 20 30

0.
0

0.
6

Lag

Srs2 & Srs3

0 10 20 30

0.
0

0.
6

Lag

Srs2 & Srs4

0 10 20 30

0.
0

0.
6

Lag

Srs2 & Srs5

−30 −15 0

0.
0

0.
6

Lag

A
C

F

Srs3 & Srs1

−30 −15 0

0.
0

0.
6

Lag

Srs3 & Srs2

0 10 20 30

0.
0

0.
6

Lag

Series 3

0 10 20 30

0.
0

0.
6

Lag

Srs3 & Srs4

0 10 20 30

0.
0

0.
6

Lag

Srs3 & Srs5

−30 −15 0

0.
0

0.
6

Lag

A
C

F

Srs4 & Srs1

−30 −15 0

0.
0

0.
6

Lag

Srs4 & Srs2

−30 −15 0

0.
0

0.
6

Lag

Srs4 & Srs3

0 10 20 30

0.
0

0.
6

Lag

Series 4

0 10 20 30

0.
0

0.
6

Lag

Srs4 & Srs5

−30 −15 0

0.
0

0.
6

Lag

A
C

F

Srs5 & Srs1

−30 −15 0

0.
0

0.
6

Lag

Srs5 & Srs2

−30 −15 0

0.
0

0.
6

Lag

Srs5 & Srs3

−30 −15 0

0.
0

0.
6

Lag

Srs5 & Srs4

0 10 20 30

0.
0

0.
6

Lag

Series 5

Figure 2: Autocorrelation plot of MCMC output.

> plot(ts(out$batch))

Another way to look at the output is an autocorrelation plot. Figure 2
(page 5) shows the time series plot made by the R statement

> acf(out$batch)

As with any multiplot plot, this is a bit hard to read, but all we are trying to
see is that the autocorrelations are negligible after about lag 25. Thus batches
of length 25 should be sufficient. But let’s use 100 to be safe.

> out <- metrop(out, nbatch = 100, blen = 100, outfun = function(z,

+ ...) c(z, z^2), x = x, y = y)

> out$accept

[1] 0.2332

> out$time

[1] 1.25 0.48 1.73 0.00 0.00

5

We have added an argument outfun that gives the “functional” of the state
we want to average. For this problem we are interested in both posterior mean
and variance. Mean is easy, just average the variables in question. But variance
is a little tricky. We need to use the identity

var(X) = E(X2)− E(X)2

to write variance as a function of two things that can be estimated by simple
averages. Hence we want to average the state itself and the squares of each
component. Hence our outfun returns c(z, z^2) for an argument (the state
vector) z.

The grand means (means of batch means) are

> apply(out$batch, 2, mean)

[1] 0.6531950 0.7920342 1.1701075 0.5077331 0.7488265
[6] 0.5145751 0.7560775 1.4973807 0.3913837 0.7244162

The first 5 numbers are the Monte Carlo estimates of the posterior means. The
second 5 numbers are the Monte Carlo estimates of the posterior absolute second
moments. We get the posterior variances by

> foo <- apply(out$batch, 2, mean)

> mu <- foo[1:5]

> sigmasq <- foo[6:10] - mu^2

> mu

[1] 0.6531950 0.7920342 1.1701075 0.5077331 0.7488265

> sigmasq

[1] 0.08791134 0.12875924 0.12822924 0.13359081 0.16367507

Monte Carlo standard errors (MCSE) are calculated from the batch means.
This is simplest for the means.

> mu.mcse <- apply(out$batch[, 1:5], 2, sd)/sqrt(out$nbatch)

> mu.mcse

[1] 0.01224260 0.01417916 0.01793129 0.01468594 0.01582040

The extra factor sqrt(out$nbatch) arises because the batch means have vari-
ance σ2/b where b is the batch length, which is out$blen, whereas the overall
means mu have variance σ2/n where n is the total number of iterations, which
is out$blen * out$nbatch.

MCSE for the posterior variances is also simple but a bit tricky. First note
that the two calculations

> apply(out$batch[, 6:10], 2, mean) - mu^2

6

[1] 0.08791134 0.12875924 0.12822924 0.13359081 0.16367507

> apply(sweep(out$batch[, 6:10], 2, mu^2), 2, mean)

[1] 0.08791134 0.12875924 0.12822924 0.13359081 0.16367507

do the same thing. The latter makes it clear that

> sigmasq.mcse <- apply(sweep(out$batch[, 6:10],

+ 2, mu^2), 2, sd)/sqrt(out$nbatch)

> sigmasq.mcse

[1] 0.01726152 0.02482315 0.04655002 0.01798337 0.02562800

does the MCSE for the posterior variance.
If we are also interested in the posterior standard deviation (a natural ques-

tion, although not asked on the exam problem), the delta method gives its
standard error in terms of that for the variance

> sigma <- sqrt(sigmasq)

> sigma.mcse <- sigmasq.mcse/(2 * sigma)

> sigma

[1] 0.2964985 0.3588304 0.3580911 0.3655008 0.4045678

> sigma.mcse

[1] 0.02910896 0.03458897 0.06499746 0.02460100 0.03167331

So that’s it. The only thing left to do is a little more precision (the exam
problem directed “use a long enough run of your Markov chain sampler so that
the MCSE are less than 0.01”)

> out <- metrop(out, nbatch = 500, blen = 400, x = x,

+ y = y)

> out$accept

[1] 0.235155

> out$time

[1] 24.93 9.63 34.57 0.00 0.00

> foo <- apply(out$batch, 2, mean)

> mu <- foo[1:5]

> sigmasq <- foo[6:10] - mu^2

> mu

[1] 0.6624650 0.7941013 1.1712710 0.5066326 0.7261414

7

> sigmasq

[1] 0.09189246 0.13323054 0.13230811 0.12871293 0.15978638

> mu.mcse <- apply(out$batch[, 1:5], 2, sd)/sqrt(out$nbatch)

> mu.mcse

[1] 0.002960128 0.003647420 0.003787855 0.003632080
[5] 0.004273624

> sigmasq.mcse <- apply(sweep(out$batch[, 6:10],

+ 2, mu^2), 2, sd)/sqrt(out$nbatch)

> sigmasq.mcse

[1] 0.004250030 0.006448611 0.009418470 0.004182393
[5] 0.006657834

> sigma <- sqrt(sigmasq)

> sigma.mcse <- sigmasq.mcse/(2 * sigma)

> sigma

[1] 0.3031377 0.3650076 0.3637418 0.3587658 0.3997329

> sigma.mcse

[1] 0.007010065 0.008833530 0.012946642 0.005828862
[5] 0.008327853

and some nicer output, which is presented in three tables constructed from the
R variables defined above using the R xtable command in the xtable library.

First the posterior means, then the posterior variances (table on page 9),

Table 1: Posterior Means

constant x1 x2 x3 x4

estimate 0.6625 0.7941 1.1713 0.5066 0.7261
MCSE 0.0030 0.0036 0.0038 0.0036 0.0043

and finally the posterior standard deviations (table on page 9).
Note for the record that the all the results presented in the tables are from

“one long run” where long here took only 24.93 seconds (on whatever computer
it was run on).

References

Gelman, A., G. O. Roberts, and W. R. Gilks (1996). Efficient Metropolis jump-
ing rules. In Bayesian Statistics, 5 (Alicante, 1994), pp. 599–607. Oxford
University Press.

8

Table 2: Posterior Variances

constant x1 x2 x3 x4

estimate 0.0919 0.1332 0.1323 0.1287 0.1598
MCSE 0.0043 0.0064 0.0094 0.0042 0.0067

Table 3: Posterior Standard Deviations

constant x1 x2 x3 x4

estimate 0.3031 0.3650 0.3637 0.3588 0.3997
MCSE 0.0070 0.0088 0.0129 0.0058 0.0083

Geyer, C. J. and E. A. Thompson (1995). Annealing Markov chain Monte Carlo
with applications to ancestral inference. Journal of the American Statistical
Association, 90, 909–920.

9

