
 

Protein Mass Spectra (SELDI) Data 

Processing and Classification with 

“caMassClass” library 
 

By 

Jarek Tuszynski (SAIC) 

 

 
License of caMassClass ...................................................................................................... 3 

1 Discussion of Protein Mass Spectra (SELDI) Data Processing and Classification ..... 4 

1.1 Introduction......................................................................................................... 4 

1.2 Background ......................................................................................................... 4 

1.3 Methods............................................................................................................... 5 

1.4 Concerns ........................................................................................................... 12 

1.5 Conclusions and Recommendations ................................................................. 13 

2 Functions in the caMassClass Library ....................................................................... 15 

2.1 msc.project.run - Read and Preprocess Protein Mass Spectra .......................... 15 

2.2 msc.project.read - Read and Manage a Batch of Protein Mass Spectra ........... 16 

2.3 msc.msfiles.read.csv - Read Protein Mass Spectra from CSV files ................. 18 

2.4 msc.preprocess.run - Preprocessing Pipeline of Protein Mass Spectra ............ 20 

2.5 msc.baseline.subtract - Baseline Subtraction for Mass Spectra Data ............... 23 

2.6 msc.mass.cut - Remove Low Mass Portion of the Mass Spectra Data............. 24 

2.7 msc.mass.adjust - Perform Normalization and Mass Drift Adjustment for Mass 

Spectra Data................................................................................................................... 25 

2.8 msc.peaks.find - Find Peaks of Mass Spectra................................................... 28 

2.9 msc.peaks.align - Align Peaks of Mass Spectra into a "Biomarker" Matrix .... 30 

2.10 msc.peaks.clust - Clusters Peaks of Mass Spectra............................................ 33 

2.11 msc.peaks.read.csv & msc.peaks.write.csv - Read and Write Mass Spectra 

Peaks in CSV Format .................................................................................................... 35 

2.12 msc.biomarkers.fill - Fill Empty Spaces in Biomarker Matrix......................... 36 

2.13 msc.biomarkers.read.csv & msc.biomarkers.write.csv - Read and Write 

biomarker matrix in CSV format................................................................................... 37 

2.14 msc.copies.merge - Merge Multiple Copies of Mass Spectra Samples ............ 38 

2.15 msc.classifier.test - Test a Classifier through Cross-validation........................ 41 

2.16 msc.classifier.run - Train and Test Chosen Classifier. ..................................... 43 

2.17 msc.sample.split - Split Data into Test and Train Set....................................... 46 



2.18 msc.features.select - Reduce Number of Features Prior to Classification........ 47 

2.19 msc.features.remove - Remove Highly Correlated Features ............................ 49 

2.20 msc.features.scale - Scale Classification Data.................................................. 50 

2.21 msc.sample.correlation - Sample Correlation................................................... 51 

3 Generic Tool Functions.............................................................................................. 53 

3.1 LogitBoost - LogitBoost Classification Algorithm........................................... 53 

3.2 predict.LogitBoost - Prediction Based on LogitBoost Classification Algorithm

 55 

3.3 Moving Window Analysis of a Vector ............................................................. 56 

3.4 base64encode & base64decode - Convert R vectors to/from the Base64 format

 59 

3.5 bin2raw & raw2bin - Convert R vectors to/from the raw binary format .......... 61 

3.6 colAUC - Columnwise Area Under ROC Curve (AUC).................................. 63 

3.7 read.ENVI & write.ENVI - Read and write binary data in ENVI format ........ 65 

3.8 trapz - Trapezoid Rule Numerical Integration .................................................. 67 

3.9 combs - All Combinations of k Elements from Vector v ................................. 68 

4 References .................................................................................................................. 70 



License of caMassClass 
The caMassClass Software License, Version 1.0 

 

Copyright 2001-2003 SAIC. This software was developed in conjunction with the National 

Cancer Institute, and so to the extent government employees are co-authors, any rights in such 

works shall be subject to Title 17 of the United States Code, section 105.  

 

Redistribution and use in source and binary forms, with or without modification, are permitted 

provided that the following conditions are met:  

 

1. Redistributions of source code must retain the above copyright notice, this list of conditions 

and the disclaimer of Article 3, below. Redistributions in binary form must reproduce the 

above copyright notice, this list of conditions and the following disclaimer in the 

documentation and/or other materials provided with the distribution.  

 

2. The end-user documentation included with the redistribution, if any, must include the 

following acknowledgment: 

 

"This product includes software developed by the SAIC and the National Cancer 

Institute." 
 

3. If no such end-user documentation is to be included, this acknowledgment shall appear in the 

software itself, wherever such third-party acknowledgments normally appear.  

 

4. The names "The National Cancer Institute", "NCI" and "SAIC" must not be used to endorse 

or promote products derived from this software.  

 

5. This license does not authorize the incorporation of this software into any third party 

proprietary programs. This license does not authorize the recipient to use any trademarks 

owned by either NCI or SAIC-Frederick.  

 

6. THIS SOFTWARE IS PROVIDED "AS IS," AND ANY EXPRESSED OR IMPLIED 

WARRANTIES, (INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE) ARE 

DISCLAIMED. IN NO EVENT SHALL THE NATIONAL CANCER INSTITUTE, SAIC, 

OR THEIR AFFILIATES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGE. 



Figure 1: SELDI chip preparation.  Drawing 

adapted from East Virginia Medical School – 

Virginia Prostate Center[10] website. 

Sample 
Protein 

Figure 2: SELDI sample processing.  Parts of drawing 

adapted from EVMS[10] website. 

SELDI Mass Reader 

spectrum 

1 Discussion of Protein Mass Spectra (SELDI) Data 
Processing and Classification 

1.1 Introduction 
 The purpose of this task is to build a tool that applies classification algorithms to 

proteomics data (especially SELDI data).  Main intended use of those algorithms is 

distinguishing cancerous samples from normal samples; however they can be used for 

other classification problems as well. 

 

Developed tools will be used to extend 

caWorkbench to allow researchers to 

perform standard classification operations 

on protein (SELDI) data collected and 

stored as a part of caARRAY. Most of the 

classification methods described in this 

document can be easily applied for other 

types of data.  

1.2 Background 
SELDI is a relatively new process which 

adapted existing mass spectrometry 

methodology to protein study. An excellent 

overview this process can be found at 

[10][21]. The following summary of the 

process mostly bases on their account. 

Chip Array surface is selected from 

variety of chips specialized in 

capturing different types of protein 

samples. Available types are: 

• Hydrophobic for reversed-

phase chromatography 

• Normal phase chromatography 

• Anion or cation exchange 

surface 

• Metal binding (IMAC) 

• Etc. 

Chip goes through several 

preparation steps performed either 

manually or by robotic 

workstation. Sample is applied 

onto chip array, where targeted 

subset of protein binds to the chip 

surface, while the rest of the sample is washed away. Afterwards, energy absorbing 

molecule (EAM) is added in order to ionize the proteins and the chip with the sample is 



send to “Surface –Enhanced Laser Desorption / Ionization” (SELDI) mass reader.  There 

laser is used to free ionize proteins and allow them to be pulled by magnetic field through 

vacuum “time-of-flight” tube, where they are separated based on their mass to charge 

ratio. On the other end of the flight tube their arrival time is recorded by a detector in 

form of a spectrum. The rest of this paper is concerned with studying those SELDI 

spectra.  This process was first commercialized by Ciphergen Inc. However at present 

other manufacturers produce competing products. 

 

1.3 Methods 
Before SELDI or other protein data can be classified it has to go through several steps of 

what I will call pre-processing. 

 

Many different researchers used very different methods in order to process and classify 

SELDI data. However generalized approach is as follows: 

 

I. Data Input 

II. Pre-processing  

1. Baseline subtraction 

2. Normalization 

3. Mass-drift Adjustment 

4. Peak finding and alignment (finding biomarkers, feature extraction)  

5. Merging of multiple sample copies  

III. Classification 

1. Feature Selection 

2. Building Classifier 

 

Many of the above steps are optional and were skipped by some or most of the 

researchers. 

 

Data Input 

In case of SELDI data exported from Ciphergen software, data at different stages of 

processing comes in different format. 

 



 

Figure 1: Conceptual view of most common format of SELDI data 

 

1. Raw spectra, baseline subtracted and/or normalized spectra come in the form of 

separate Excel CSV (“comma separated values”) file for each spectrum. Each file 

contains mass (M/Z) column and intensity column.  

2. One could also export data after peak finding step. Those files are also in the CSV 

format.  They store one row per peak, and can contain many different columns 

describing different aspects of each peak.  Among them one should find: spectrum 

name and/or number, intensity (peak height), “Substance.Mass” (peak mass / 

position). 

3. After peak alignment all data can be exported in a single CSV file that contains 

one row per spectrum with each column representing different cluster of peaks 

(biomarker, feature). 

Other non vendor-specific formats will likely be developed and used in the future, but for 

time being those three seem to be most common. 

 

Pre-Processing 

Ciphergen SELDI machine comes with its own software which is able to perform some 

or most of the preprocessing steps. It is up to a user to decide at which point to export 

their data from Ciphergen environment and start processing it by themselves. However in 

case of data available on the web, which accompany many papers, researchers that want 

to reproduce published results have no choice of data format. 

 

If input data is not base-line subtracted this step should be always performed.  Base-line 

is a smooth line that follows local minimum without rising into peaks. Subtracting that 

line makes “valleys” of the spectrum rest at the zero line. This step is usually done by 

Ciphergen software, but codes to perform it are also available in PROcess library[2] and 

Cromwell package[3]. PROcess library bslnoff function divides spectrum into number of 

unequal sections, finds a minimum (or a quantile corresponding to given probability) of 

each section, replaces each intensity by that minimum and fits a smooth curve through all 

2D Matrix of SELDI signatures stored in such a way that: 

rows correspond to samples and columns correspond to signal 

for each mass/charge.  

 

There might be 1 or more copies of this matrix (i.e. 2 

measurements of the same sample). Each sample could have 

been run using one or more different chips.  

class labels  

1D 
array 

 
of 

mass / 
charge 

 
labels 



Figure 4: Example of a histogram of shifts 

to the right (+) or left (-) calculated during 

mass drift adjustment  

the points. Cromwell’s waveletSmoothAndBaselineCorrect function uses wavelets to 

smooth the spectrum and than uses cumulative (monotone) minimum as a baseline. 

 

The second step of preprocessing is normalizing the multiple spectra. It usually involves 

cutting first low mass spectra where there is a lot of high frequency high volume noise, 

which can skew normalization. Afterwards, one finds mean intensity of each spectrum 

and scales all spectra in such a way as to match all mean intensities. Other ways of 

normalizing the data also exist for example Petricoin/Liotta study normalized the data by 

matching minimum and maximum of each signature [4][5][6][7]. 

 

At this stage an optional step of mass 

drift adjustment can be performed. 

Mass drift adjustment attempts to 

shift the whole spectrum one or more 

time steps forward or backward if 

that is going to improve that spectrum 

correlation with other samples. This 

step is especially useful in case of 

multiple copies of the same sample, 

which should have very high 

correlation. The process is done in the 

following way:  

1. First we extract peak regions from 

all the spectra. That is done by 

finding a mean spectrum and 

identifying peak regions as the 

ones where mean spectrum is 

above average ( in Matlab: peaks 

= S(:,mean(S,1)>mean(S(:)) ).  

2. Then we create procedure for matching 2 spectra. First spectrum is not moved and the 

second is shifted one time step to the right or to the left as long as the correlation 

between two spectra improves  

3. Finally we use the above procedure: first to match all spectra to their copies (if 

present) and than to match each spectrum to mean spectrum. Since mean spectrum 

will be changing due to those shifts, the procedure will probably have to be done two 

or three times before stabilizing. Most of the shifts are assumed to be a few time 

steps. 

I did not found any references to other teams using mass drift adjustment, but it does 

seem to improve quality of the data. 

 



Figure 5: Algorithm families for classification of 

SELDI signatures show different approaches used by 

different teams: green: EVMS [8] & CPDR [9], brown: 

Baggerly [6], purple: an algorithm which combines peak 

finding and peak alignment, red - Pettricoin/Liotta [4]. 

Feature Selection / Extraction: 

• Use AUC or t-test to select best individual features 
• Use genetic alg. (or other) to select best sets of 
features 
• Extract features by PCA, average similar features, 
etc. 

Classifier Training & Testing: 
• Support Vector Machines • Linear classifiers 
• Boosting algorithms      • Neural Networks 
• Decision trees                    • many others 

D D D 

Normalization & mass adjustment 

Individual 

spectrum 

peak finding 

Peak Alignment 

SELDI spectra 

Ciphergen 

software for 

peak finding 

Finding 

peaks 

common 

to all 

spectra 

K K K 

K K 

C C C 

C C 

K 

K 

C 

The next step would be peak finding 

and alignment in order to find 

biomarkers. However it seems like at 

this stage there are two major different 

approaches related to SELDI  data 

classification: some research teams use 

peak alignment to reduce size of the 

data before classification [8][9][6] and 

other teams apply classification 

techniques to the raw data [4] . If the 

first approach is used than the steps are 

as follows: 

1. in each spectrum separately 

peaks are detected using variety 

of different methods 

[1][2][3][6] 

2. peaks from different spectra are 

aligned into single matrix 

[11][8][2][3] (see figure 4) 

If the second approach is taken than we 

skip the above 2 steps and use feature 

selection approach to lower 

dimensionality of the data. This step 

however requires use of class labels 

and by definition is not a part of pre-

processing.  

 

The final pre-processing step is to 

merge multiple copies of each sample 

that could have been provided into single uniform set of features associated with each 

sample. If only a single copy is collected of each sample than this step should be skipped.  

There are two types of sample copies: 

1. Equivalent copies that were taken under the same conditions and should be 

identical [8] 

2. Copies are taken under different conditions (different chips, different hardware 

settings, etc.) are assumed to be different. [9] 

In order to merge the equivalent copies one can: 

1. Average them in order to get a signature with much better signal to noise ratio. 

That is especially true for the test set. 

2. If more than 2 copies are collected than one can average only two (or more) 

copies that are most similar to each other and discard the outliers. 

3.  Even with 2 copies one can average the copies if they are highly correlated to 

each other and discard one if they are not. The discarded copy should be the one 

that resembles the least other samples. 



4. In case of the train set one can also keep all the copies and treat them as separate 

training samples. That choice gives smaller sample purity, but creates larger train 

set. 

5. Another possibility is to keep all the samples and their averages for the even 

larger number of train samples. 

In case of copies taken under different conditions there seem to be only one merging 

strategy: merge them end-to-end creating samples with twice the number of features. 

 

Figure 2: Peak alignment algorithm that follows method from [11]. 

 

 

Building classifiers 

There are many classifiers that can be used. So the main purpose of this section is to 

provide framework to compare them to each other in order to choose the best one. The 

process is called cross-validation [14] and the general steps are as follow: 

• For each classification method: 

• Repeat multiple times (10s – 100s) 

• Split train set of labeled samples into 2 groups: temporary train and test sets 

• Train each classifier on train set and test it on the test set 

• Collect statistics on each classification method: mean and variance of accuracy, or 

sensitivity/specificity 

• Choose classification method with the best performance 

• Apply this method to the full set of  labeled samples 

 

 Group sets of peaks into subsets (bins). 

Each subset will consist of peaks from 

different spectra that have similar mass 

 Store peaks into 2D array (bins by samples) 

called Aligned Peaks 

P
eak

 alig
n
m

en
t 

Peak Finding 

 Store mass & sample number of each 

peak into array. Concatenate arrays from 

all samples and sort them according to 

mass  

Combine neighbor bins of Aligned Peaks if: 

• common bin does not have multiple  peaks 

from same sample 

• AUC of common bin is bigger than  AUC 

of individual bins 

Feature selection 

Aligned Peaks Bin boundaries 

Divide peaks into 2 subsets: to the left 

and to the right of the biggest gap.  

Recursively repeat the above 

process for both subsets 

Find the biggest gap between peaks.  

 In given subset of peaks, 

check if multiple peaks from 

the same sample are present.  

yes no 

If multiple gaps were found than 

minimizes number of multiple peaks 

from the same sample after cut  

1 5 17 228 12

3 5 14 257 11

1 5 17 217 10

1 5 17 228 12

3 5 14 257 11

1 5 17 217 10

22 25211 5 128 143 5 71 5 7 1110 1717 22 25211 5 128 143 5 71 5 7 1110 1717

1 5 17 228 12

3 5 14 257 11

1 5 17 217 10

1 5 17 228 12

3 5 14 257 11

1 5 17 217 10

1 5 17 228 12

3 5 14 257 11

1 5 17 217 10

1 5 17 228 12

3 5 14 257 11

1 5 17 217 10

22 25211 5 128 143 5 71 5 7 1110 1717 22 25211 5 128 143 5 71 5 7 1110 1717



In this framework the step of training each classifier could be preceded or combined with 

feature selection, for example: 

1. In order of dropping dimensionality of the data one can use t-test or Wilcoxon-test 

(equivalent to area under ROC curve) to rank each feature according to its individual 

strength of separating the data into two or more classes. Features with rank below 

certain threshold could be eliminated. [7][8] 

2. Another approach is to look for very similar neighbor features (with high correlation 

between them) and keep only one of them – the one with higher separation 

capabilities, as measured by Wilcoxon-test. That approach is especially useful if no 

peak finding is used during preprocessing.  

3. Feature selection can be also performed with goal of finding a good set of features 

instead of sets of good features. That is more time consuming approach but with 

potential high rewards. For example exhaustive search [6][7], genetic programming 

[4], or other methods,  can be used to find  the best set of features according to some 

criteria (statistical distance, accuracy of classifiers that could be build using those 

features (see figure 2), etc.)  

 

Figure 3: Example of feature selection. Among 95 features 2 were found that allow 

separation of 2 clusters with average accuracy of 78%, in this case test set was also 

predicted with 79% accuracy. 

 

The classifiers particularly useful for working on SELDI classification problem have to 

be able to work with data sets that have usually much more features than samples. I have 

the best results with: 

1. Fisher linear classifier when combined with feature selection [6][7] 

2. Support vector machine classifiers 



3. Neural network classifiers (we got the best results with a feed-forward neural 

network classifier with back-propagation) 

4. Decision tree classifiers[8][9] 

5. Boosting methods based on decision stump classifiers (AdaBoost[13], 

LogitBoost[12]) 

Pettricoin/Liotta team [4][21] also reported good results with self organizing maps 

(SOM) approach. 

 

Table 1: Error rates using different approaches on different data sets. Some classification 

is between cancer and normal samples, other is between different stages of cancer. 

  Peak finding 

by 

Ciphergen 

software & 

alignment 

Individual 

peak 

finding & 

alignment 

Common 

peak 

finding 

Selection of 

smoothed 

features 

without 

peak finding 

Feature 

Selection 

without peak 

finding 

CPDR-1 

Cancer/Norm

al 

23±7% -my 

peak finding 

17±6% - 

peak finding 

by CPDR 

~25%   ~25%   

CPDR-2 

Cancer/Cance

r 

  Very poor 

results 

Very poor 

results 

Very poor 

results 

  

CPDR-3 

Cancer/Norm

al 

    48%  Very poor 

results 

7% (but ~50% 

in blind test) 

CPDR-3a 

Cancer/Norm

al 

~20% in 

blind test 

33±10% 30±8%    6% (20% in 

blind test) 

CPDR-4 

Cancer/Norm

al 

21% in blind 

Cancer/ 

normal test 

    ~30% in cross 

validation of 

cancer/ cancer 

EVMS-VPC 

Cancer/Benig

n/Normal 

2.5±2 % 

(Peak finding 

and 

alignment 

done by 

EVMS) 

~25% 19.2±5% 10 feat. & ldc 

- 18.3±4% 

200 feat. & 

svm - 24±4% 

10 feat. & ldc 

- 19.3±4% 

200 feat. & 

svm - 28±6% 

NCI-Prostate 

Data 

Cancer/Benig

n/Normal 

No data in 

Ciphergen 

format 

17 ±5%  13±4%  10 feat. & ldc 

- 12±4% 

200 feat. & 

svm - 15±4% 

9 feat. & ldc - 

13±4% 

200 feat. & 

svm - 19±4% 

NCI-Ovarian 

Data Set I 

(Lancet set) 

No data in 

Ciphergen 

format 

Poor results Poor results ~20% 0% - 

Benign/Norm

al & Cancer 



Cancer/Benig

n/Normal 

using Eigen 

vectors;  

Normal/Cance

r 5 feat. & ldc 

- 8±4% 

NCI-Ovarian 

Data Set II 

Cancer/Benig

n/Normal 

No data in 

Ciphergen 

format 

      0.05% error 

can be 

achieved with 

3 point linear 

classifier 

NCI-Ovarian 

Data Set III 

Cancer/Norm

al 

No data in 

Ciphergen 

format 

Impossible 

because 

data was 

not base-

line 

corrected 

Impossible 

because 

data was 

not base-

line 

corrected 

  0% - using 2 

sets of 2 
features and 

linear classifier 

 

1.4 Concerns 
In SELDI spectra classification problem there are two major potential problems inherit to 

the process: 

• Low data reproducibility – SELDI instruments are very sensitive to minute 

changes in machine settings and sample preparation protocol. As a result, two 

machines or the same machine at different times will likely give the different 

results for the same samples. That, among other problems, creates a potential for 

introducing bias into the data samples. For example if cancer samples are 

processed in a separate batch from normal samples, than there is a potential that 

the best classifier found to distinguish between them will not relay on biological 

differences but rather on differences in machine settings. That or similar scenario 

possibly happen to one of ovarian cancer datasets listed in [5] as suggested by 

[6][7]. Another example would be CPDR-3 data set where train dataset was 

collected at different time than test dataset. As a result my best classifiers which 

had 7% error rate during cross validation procedure had close to 50% error rate in 

during blind test. 

• Possibility of false discovery – is a second potential problem, which is shared 

with other types of data that have much larger number of features (10 000s) than 

samples (100s), for example microarrays [22]. Many of the standard classification 

algorithms are so good at what they are doing, that they can find patterns even in 

the random data. For example if we use exhaustive search to find the best two-

feature linear classifier (see figure 5) using data with N=50 000 features, than 

theoretically we have N
2
/2 = 10

9
 different data sets to evaluate, so even very 

unlikely events with probability of 1 in 10
9
 should happen once. Also, the smaller 

number of samples the higher the chance that random data will arrange itself into 

desired pattern. 



1.5 Conclusions and Recommendations 
Our main conclusion is that there is no single best approach for classifying SELDI data, 

but rather several competing algorithms that have to be tried in order to find the optimal 

one. The choice of the algorithm depends on many factors, some of them listed in the 

next section. My recommendation would be to implement multiple algorithms for every 

step of data processing and implement them as a single cohesive R library that would 

provide a common interface to allow researchers to experiment with different method.  

 

The Methods sections list a multitude of different approaches and algorithms. Some of 

the factors that could affect choice of the algorithm: 

1. Data size vs. time and memory available – some methods are more appropriate for  

smaller data sets since they take too long to process, also some algorithms take 

too much memory. My machine has 1.5 GB and it is no uncommon for me to run 

out of memory on larger data sets. 

2. Source of data and stage of processing – when working with data posted on the 

web by different research teams, one does not have a choice of the level of 

preprocessing done on the data. For example some data sets will be baseline 

subtracted and normalized other will be raw, yet another set will contain only 

extracted biomarkers. So the pre-processing steps to be chosen will have to match 

the data itself. 

3. Number of copies collected – the choice of data merging techniques performed on 

the end of preprocessing will mostly depend on number and type of copies 

available. 

4. Number of different categories – there is often a difference between two-way and 

multiple way classification, since some classification algorithms do not always 

support more than two classes. For example if one performs cancer/non-cancer 

classification than his choice of classifiers might be different than if one performs 

prostate cancer/non-cancer/BPH (benign prostatic hyperplasia) classification, and 

different again if one wants to study distinguishing features between four stages 

of cancer. 

5. Purpose of the study – the choice of the classifier could be different if the final 

goal of the study is to find the best possible classifier vs. to find the best classifier 

as a way of identifying a limited set of features with the greatest power of 

distinguishing between multiple classes. One might want to find distinguishing 

features, since they have to correspond to different protein which we might want 

to identify. For example: decision tree, boosting and some feature selection  

algorithms work by finding limited sub-set of features and operating only on 

those, while neural networks, SVM, fisher and many other algorithms always use 

all the features provided. Because of that, the first set of algorithms gives you two 

results: a classifier and best set of features, while the second gives you only the 

classifier 

6. Availability of different algorithms in any particular language – software and 

algorithms for SELDI data processing [1][2] [3], mass spectrometry data 

processing and classification [15-20] are available in R, Matlab, and C (C++) 

codes. This project is to be written in R language, what means that some libraries 

are available, while other will have to be rewritten. 



 

The final library would follow the basic course of operation that contains following steps: 

1. User inputs Process Parameters, which will uniquely describe the rest of the flow. 

The parameters are saved into Parameter Store, which will be retrieved by 

remaining processes. 

2. Data is pre-processed according to user specifications retrieved from Parameter 

Store, and then stored in Pre-processed Data Store 

3. Classifiers are built using pre-processed data and class labels. The steps of the 

process are specified by Parameter Store.  

4. Classifier is verified by a User or applied by a Clinical Manager. That is done by 

running the classifier on unlabeled pre-processed data in order to predict the class 

labels.  

 

Figure 4: Basic course of Pattern Recognition for Diagnosis and Treatment 
use case 

The above steps are common to all of described classification algorithms, and the choice 

of the actual algorithm will have to be saved in Parameter Store.  

 

Input Process  

Parameters 

Pre-Process  

Data 

Build  

Classifiers 

Verify / Apply  

Classifiers 

Parameter  

Store 

Pre-

processed  

Data Store 

Classifier 

Predicted  

Class Labels 

User 

Data 

Class 

Labels 

Clinical  

Manager 

Virtual or  

Physical  

Data Store 



2 Functions in the caMassClass Library  

2.1 msc.project.run - Read and Preprocess Protein Mass 
Spectra 

Description 

Read and preprocess protein mass spectra (SELDI) files where files could contain 

multiple copies of spectra taken from the same sample, or spectra from multiple 

experiments performed on the same sample.  

Usage 

msc.project.run(ProjectFile, directory.out=NULL, verbose = TRUE, ...) 

Arguments 

ProjectFile path and name of text file in Excel's CSV format which is used to store 

information about a batch of Mass Spectra data files. See details.  

directory.out Optional character vector with name of directory where output files will 

be saved. Use "/" slashes in directory name. By default the directory 

containing ProjectFile and all Mass Spectra files is used, and this 

argument is provided in case that directory is read-only and user has to 

choose a different directory. 

verbose boolean flag turns debugging printouts on. 

... parameters to be passed to msc.preprocess.run 

Details 

High level processing of protein mass spectra (SELDI) data. msc.project.read 

supports projects with multiple sets of spectra taken under different experimental 

condition. Those sets will be called batches. With that in mind, following steps are 

performed:  

• msc.project.read(ProjectFile, directory) is called which reads and saves 

different batches of mass spectra (SELDI) data into separate files. List of those 

files is saved in temporary "RInputFiles.csv" file. In future calls to 

msc.project.run, if above file exist than msc.project.read is not called again.  

• Each batch of data is loaded and preprocessed by calls to msc.preprocess.run. 

All the required parameters have to be passed through "..." mechanism.  

• In case of multiple batches of data results are rbinded  

Value 



X Spectrum data either in matrix format [nFeatures x nSamples] or in 3D 

array format [nFeatures x nSamples x nCopies]. Row names 

(rownames(X) store M/Z mass of each row merged with batch name  

SampleLabels Class label for each sample as read from msc.project.read  

See Also 

msc.project.read, msc.preprocess.run  

Examples 

  directory  = system.file("Test", package = "caMassClass") 

  ProjectFile = file.path(directory,"InputFiles.csv") 

  Data = msc.project.run(ProjectFile, '.',   

      baseline.removal=0, mass.drift.adjustment=1, min.mass=3000,  

      peak.extraction=1, merge.copies=7, shiftPar=0.0004) 

2.2 msc.project.read - Read and Manage a Batch of 
Protein Mass Spectra 

Description 

Read and manage a batch of protein mass spectra (SELDI) files where files could contain 

multiple spectra taken from the same sample, or multiple experiments performed on the 

same sample.  

Usage 

msc.project.read(ProjectFile, directory.out=NULL)  

Arguments 

ProjectFile path and name of text file in Excel's CSV format which is used to store 

information about a batch of Mass Spectra data files. See details.  

directory.out Optional character vector with name of directory where output files will 

be saved. Use "/" slashes in directory name. By default the directory 

containing ProjectFile and all Mass Spectra files is used, and this 

argument is provided in case that directory is read-only and user have to 

choose a different directory. 

Details 

Function msc.project.read allows to user to manage large batches of Mass Spectra 

files, especially when multiple copies of each sample are present. The ProjectFile 

contains all the information about the project. An example format might be:  



Name, Class, IMAC1,  IMAC2,  WCX1,  WCX2  

r0008,  1,  Nr/imac_r0008.csv, Nr/imac_r0008(2).csv, Nr/wcx_r0008.csv, Nr/wcx_r0008(2).csv 

r0012,  1,  Nr/imac_r0012.csv, Nr/imac_r0012(2).csv, Nr/wcx_r0012.csv, Nr/wcx_r0012(2).csv 

r0014,  1,  Nr/imac_r0014.csv, Nr/imac_r0014(2).csv, Nr/wcx_r0014.csv, Nr/wcx_r0014(2).csv 

r0021,  2,  Ca/imac_r0021.csv, Ca/imac_r0021(2).csv, Ca/wcx_r0021.csv, Ca/wcx_r0021(2).csv 

r0022,  2,  Ca/imac_r0022.csv, Ca/imac_r0022(2).csv, Ca/wcx_r0022.csv, Ca/wcx_r0022(2).csv 

r0024,  2,  Ca/imac_r0024.csv, Ca/imac_r0024(2).csv, Ca/wcx_r0024.csv, Ca/wcx_r0024(2).csv 

r0027,  2,  Ca/imac_r0027.csv, Ca/imac_r0027(2).csv, Ca/wcx_r0027.csv, Ca/wcx_r0027(2).csv 

ProjectFile always has the following format:  

• column 1 - unique name for each sample - Those names will be used in the 

program to identify the samples  

• column 2 - class label for each sample - in the classification part of the code those 

labels will be used as a response vector (target values). Usually a factor for 

classification, but could be a unique number for regression.  

• columns 3+ - file path (from directory) for each file in the project. If 

ProjectFile has more than 3 columns than multiple copies of the same sample 

are present. In that case column labels (IMAC1, IMAC2, WCX1, WCX2) become 

important, since they distinguish between equivalent copies taken under the same 

conditions and copies taken under different conditions. In our example both kinds 

of copies exist: files in columns IMAC1 and IMAC2 contain two copies of 

spectra collected using Ciphergen's IMAC ProteinChip array and files in columns 

WCX1 and WCX2 used WCX array. The labels of those columns are expected to 

use letters as labels for different copies and numbers to mark multiple identical 

copies.  

File names in ProjectFile could be compressed uzing zip and gzip file compression. 

For example if individual file name is in the format:  

• "a.csv" - trivial case - uncompressed file  

• "b.zip/a.csv" - file within zipped file  

• "a.csv.gz" - gziped individual file  

Value 

List of .Rdata files storing data that was just read. Each file contains either 2D data (if 

only one copy of the the data existed) or 3D data (if multiple copies of the data existed). 

Multiple files are produced if multiple experiments were performed under different 

conditions. In above example two files will be produced: Data_IMAC.Rdata and 

Data_WCX.Rdata. 

See Also 



• msc.msfiles.read.csv is a lower level function useful for data that does not 

have multiple copies,  

• msc.preprocess.run is usually used to process output of this function.  

• read.files from PROcess library can read a single SELDI file and rmBaseline 

can read in a directory of files and substract their baselines.  

• ppc.read.raw.batch and ppc.read.raw.nobatch from ppc library can also 

read SELDI files, assuming correct directory structure.  

Examples 

  directory = system.file("Test", package = "caMassClass") 

  ProjectFile = file.path(directory,"InputFiles.csv") 

  FileNames = msc.project.read(ProjectFile, '.') 

  cat("File ",FileNames," was created\n") 

2.3 msc.msfiles.read.csv - Read Protein Mass Spectra 
from CSV files 

Description 

Read multiple protein mass spectra (SELDI) files, listed in FileList, from a given 

directory and combine them into a single data structure. Files are in CSV format, possibly 

compresses. If FileList is an 1D list than data is stored as a matrix one file per column. 

If FileList is a 2D data-frame than data is stored in 3D array.  

Usage 

  msc.msfiles.read.csv(directory=".", FileList="\.csv",  

                       SampleNames=NULL, CopyNames=NULL) 

Arguments 

directory a character vector with name of directory where all the files can be found. 

Use "/" slashes in directory name. The default corresponds to the working 

directory getwd(). 

FileList List of files to read. List can be in the following formats:  

• single string - a regular expression (see regex) to be used in 

selecting files to read, for example "\.csv"  

• list - list of file names to be read  

• data.frame (multiple lists of file names)- multiple copies of the 

same samples are present - see details  

The last two formats also support file zip and gzip file compression. For 

example if individual file name is in the format:  



• "dir/a.csv" - uncompressed file 'a.csv' in directory 'dir'  

• "dir/b.zip/a.csv" - file 'a.csv' within zipped file 'b.zip'  

• "dir/a.csv.gz" - gziped individual file  

SampleNames Optional list of names to be used as sample/column names. 

CopyNames Optional list of names to be used as copy/plane names in case FileList is an 

2D data frame. 

Details 

All files should be in Excel's CSV format (table in text format: 1 row per line, comma 

delaminated columns). Each file is assumed to have two columns, in case of SELDI data: 

column 1 (x-axis) is mass/charge (M/Z), and column 2 (y-axis) is spectrum intensity. All 

files are assumed to have identical first (M/Z) column.  

If multiple copies of the same sample were collected than one can store them in a 3D 

array (data cube) where each column correspond to a single sample, each row is a single 

mass (M/Z) and each plane is a single copy. To do so one has to pass a 2D data frame as 

FileList where each column contains file names of multiple copies of the same sample 

and each row contains filenames of a single copy of different samples.  

Value 

Data structure containing all the data read from the files. It can be in form of a 2D matrix 

(nFeatures x nSamples) or 3D array (nFeatures x nSamples x nCopies) depending on 

input. 

See Also 

• Part of msc.project.run pipeline.  

• msc.project.read gives user much more flexibility in defining the meaning of 

the data to be read.  

• msc.preprocess.run is often used as a next step in the process  

• read.files from PROcess library can read a single SELDI file and rmBaseline 

can read in a directory of files and substract their baselines.  

• ppc.read.raw.batch and ppc.read.raw.nobatch from ppc library can also 

read SELDI files, assuming correct directory structure.  

Examples 

  # example of mode "single string" FileList 

  directory  = system.file("Test", package = "caMassClass") 

  X = msc.msfiles.read.csv(directory, "IMAC_normal_.*csv") 

  dim(X) 

   



  # example of explicite 1D FileList 

  ProjectFile = file.path(directory,"InputFiles.csv") 

  FileList = read.csv(file=ProjectFile, comment.char = "") 

  FileList[,3] 

  X = msc.msfiles.read.csv(directory, FileList=FileList[,3], 

SampleNames=FileList[,1]) 

  dim(X) 

   

  # example of explicite 2D FileList 

  FileList[,3:4] 

  X = msc.msfiles.read.csv(directory, FileList=FileList[,3:4],  

        SampleNames=FileList[,1], CopyNames=c("copy 1", "copy 2")) 

  dim(X) 

2.4 msc.preprocess.run - Preprocessing Pipeline of 
Protein Mass Spectra 

Description 

Pipeline for preprocessing protein mass spectra (SELDI) data before classification.  

Usage 

msc.preprocess.run ( X, 

    baseline.removal = 0, 

      breaks=200, qntl=0, bw=0.005,                    # bslnoff 

    min.mass = 3000,                                   # msc.mass.cut 

    mass.drift.adjustment = 1, 

      shiftPar=0.0005,                                 # 

msc.mass.adjust 

    peak.extraction = 0,  

     PeakFile=0, SNR=2, span=c(81,11), zerothresh=0.9, # msc.peaks.find 

     BmrkFile=0, BinSize=c(0.002, 0.008), tol=0.97,    # 

msc.peaks.align  

     FlBmFile=0, FillType=0.9,                         # 

msc.biomarkers.fill 

    merge.copies = 4+2+1,                              # 

msc.copies.merge 

    verbose = TRUE)  

Arguments 

X Spectrum data either in matrix format [nFeatures x nSamples] 

or in 3D array format [nFeatures x nSamples x nCopies]. Row 

names (rownames(X) store M/Z mass of each row.  

baseline.removal Remove baseline from each spectrum? (boolean or 0/1 

integer). See function msc.baseline.subtract and bslnoff 

from PROcess library for other parameters that can be passed: 

breaks, qntl and bw.  

min.mass Cutting place when removing data corresponding to low 



masses (m/z). See function msc.mass.cut for details. 

mass.drift.adjustment Controls mass drift adjustment and scaling. If 0 than no mass 

adjustment or scaling will be performed; otherwise, it is 

passed to msc.mass.adjust function as scalePar. Because 

of that: 1 means that afterwards all samples will have the same 

mean, 2 means that afterwards all samples will have the same 

mean and medium. See function msc.mass.adjust for details 

and additional parameter shiftPar that can be passed. 

peak.extraction Perform peak extraction and alignment, or keep on working 

with the raw spectra? (boolean or 0/1 integer). See following 

functions for other parameters that can be passed:  

• msc.peaks.find - see parameters: PeakFile, SNR, 

span and zerothresh  

• msc.peaks.align - see parameters: BmrkFile, 

BinSize and tol  

• msc.biomarkers.fill - see parameters: FlBmFile 

and FillType  

Especially filenames to store intermediate results.  

merge.copies In case multiple copies of data exist should they be merged 

and how? Passed to msc.copies.merge function as 

mergeType variable. See that function for more details.  

verbose Boolean flag turns debugging printouts on. 

breaks parameter to be passed to bslnoff function from PROcess 

library by msc.baseline.subtract  

qntl parameter to be passed to bslnoff function from PROcess 

library by msc.baseline.subtract  

bw parameter to be passed to bslnoff function from PROcess 

library by msc.baseline.subtract  

shiftPar parameter to be passed to msc.mass.adjust  

PeakFile parameter to be passed to msc.peaks.find  

SNR parameter to be passed to msc.peaks.find  

span parameter to be passed to msc.peaks.find  

zerothresh parameter to be passed to msc.peaks.find  

BmrkFile parameter to be passed to msc.peaks.align  

BinSize parameter to be passed to msc.peaks.align  

tol parameter to be passed to msc.peaks.align  

FlBmFile parameter to be passed to msc.biomarkers.fill  

FillType parameter to be passed to msc.biomarkers.fill  



Details 

Function containing several pre-processing steps preparing protein mass spectra (SELDI) 

data for classification. This function is a "pipeline" performing several operations, all of 

which do not need class label information. Any and all steps are optional and can be 

skipped:  

• Remove baseline from each spectrum, using msc.baseline.subtract and 

bslnoff from PROcess library.  

• Remove data corresponding to low masses (m/z), using msc.mass.cut.  

• Adjust for mass drift and normalize data, using msc.mass.adjust.  

• Find peaks and align them into "biomarker" matrix, using msc.peaks.find, 

msc.peaks.align and msc.biomarkers.fill.  

• Merge multiple copies of data, using msc.copies.merge.  

Value 

Return matrix containing features as rows and samples as columns, unless merge.copies 

was 0,4, or 8 when no merging is done and data is returned in same or similar format as 

the input format [nFeatures x nSamples x nCopies]. Row names (rownames(X) store M/Z 

mass of each row. 

See Also 

• Input data likely come from msc.preprocess.run or msc.msfiles.read.csv 

functions  

• As mentioned above function uses the following lower level functions: 

msc.baseline.subtract, bslnoff from PROcess library, msc.mass.cut, 

msc.mass.adjust, msc.peaks.find, msc.peaks.align, 

msc.biomarkers.fill, and msc.copies.merge.  

• Output data can be latter used for classification using msc.classifier.test 

function  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

   

  # run preprocess 

  Y = msc.preprocess.run(X) 

  cat("Size before: ", dim(X), " and after :", dim(Y), "\n") 



2.5 msc.baseline.subtract - Baseline Subtraction for 
Mass Spectra Data 

Description 

Perform baseline subtraction on batch of mass spectra data  

Usage 

msc.baseline.subtract(X, ...)  

Arguments 

X Spectrum data either in matrix format [nFeatures x nSamples] or in 3D array format 

[nFeatures x nSamples x nCopies]. Row names (rownames(X) store M/Z mass of 

each row/feature.  

... parameters to be passed to bslnoff function from PROcess library. See details for 

explanation of breaks, qntl, and bw. Boolean parameter plot can be used to plot 

results.  

Details 

Perform baseline subtraction for every sample in a batch of data, using bslnoff function 

from PROcess library. The bslnoff function splits spectrum into breaks number of 

exponentially growing regions. Baseline is calculated by appling 

quantile(...,probs=qntl) to each region and smoothing the results using 

loess(..., span=bw, degree=1) function.  

Value 

Data in the same format and size as input variable X but with the subtracted baseline. 

See Also 

• Part of msc.preprocess.run and msc.project.run pipelines.  

• Previous step in the pipeline was msc.project.read and 
msc.msfiles.read.csv  

• Next step in the pipeline is msc.mass.cut  

• This function uses bslnoff (from PROcess library) which is a single-spectrum 

baseline removal function implemented using loess function.  

• Function rmBaseline (from PROcess library) can read all CSV files in directory 

and remove their baselines.  

Examples 



  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

   

  # run msc.baseline.subtract using 3D input 

  Y = msc.baseline.subtract(X) 

  cat("Size before: ", dim(X), " and after :", dim(Y), "\n") 

 

  # test on data provided in PROcess package (2D input) 

  directory  = system.file("Test", package = "PROcess") 

  X = msc.msfiles.read.csv(directory)  

  Y = msc.baseline.subtract(X, plot=TRUE) 

  cat("Size before: ", dim(X), " and after :", dim(Y), "\n") 

 

2.6 msc.mass.cut - Remove Low Mass Portion of the 
Mass Spectra Data. 

Description 

Remove low-mass portion of the protein mass spectra (SELDI) data.  

Usage 

msc.mass.cut( X, MinMass=3000)  

Arguments 

X Spectrum data either in matrix format [nFeatures x nSamples] or in 3D array 

format [nFeatures x nSamples x nCopies]. Row names (rownames(X)) store 

M/Z mass of each row.  

MinMass Minimum mass threshold. All data below that mass will be deleted 

Details 

Low-mass portion of the protein mass spectra is removed since it is not expected to have 

any biological information, and it has large enough amplitude variations that can skew 

normalization process. This function also removes all the masses (features) where the 

values in all the samples are identical. That happens sometimes when the ends of the 

samples are set to zero.  

Value 

Data in the similar format as input variable X but likely with fewer features. 

See Also 



• Part of msc.preprocess.run and msc.project.run pipelines.  

• Previous step in the pipeline was msc.baseline.subtract  

• Next step in the pipeline is msc.mass.adjust  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

   

  # run in 3D input 

  Y = msc.mass.cut( X, MinMass=3000) 

  cat("Size before: ", dim(X), " and after :", dim(Y), "\n") 

 

  # test on data provided in PROcess package (2D input) 

  directory  = system.file("Test", package = "PROcess") 

  X = msc.msfiles.read.csv(directory)  

  Y = msc.mass.cut( X, MinMass=4000) 

  cat("Size before: ", dim(X), " and after :", dim(Y), "\n") 

 

2.7 msc.mass.adjust - Perform Normalization and Mass 
Drift Adjustment for Mass Spectra Data. 

Description 

Perform normalization and mass drift adjustment for protein mass spectra (SELDI) data.  

Usage 

  msc.mass.adjust(X, scalePar=2, shiftPar=0.0005, AvrSamp=0) 

  msc.mass.adjust.calc(X, scalePar=2, shiftPar=0.0005, AvrSamp=0) 

  msc.mass.adjust.apply(X, shiftX, scaleY, shiftY)  

Arguments 

X Spectrum data either in matrix format [nFeatures x nSamples] or in 3D array 

format [nFeatures x nSamples x nCopies]. Row names (rownames(X)) store 

M/Z mass of each row.  

scalePar Controls scaling (normalization): 1 means that afterwards all samples will have 

the same mean, 2 means that afterwards all samples will have the same mean 

and medium (default) 

shiftPar Controls mass adjustment. Shifting sample has to improve correlation by at 

least that amount to be considered. Designed to prevent shifts based on 

"improvement" on order of magnitude of machine accuracy. If set to too large 

will turn off shifting. Default = 0.0005. 

AvrSamp Is used to normalize test set the same way train set was normalized. Test set is 



processed using AvrSamp array that was one of the outputs from train-set mass-

adjustment. See examples. 

shiftX matrix [nSamp x nCopy] - integer number of positions a sample should be 

shifted to the right (+) or left (-). Output from msc.mass.adjust.calc and 

input to msc.mass.adjust.apply. 

scaleY matrix [nSamp x nCopy] - multiply each sample in order to normalize it. 

Output from msc.mass.adjust.calc and input to msc.mass.adjust.apply. 

shiftY matrix [nSamp x nCopy] - subtract this number from scaled sample (if 

matching medians). Output from msc.mass.adjust.calc and input to 

msc.mass.adjust.apply. 

Details 

Mass adjustment assumes that SELDI data has some error associated with inaccuracy of 

setting the starting point of time measurement (x-axis origin or zero M/Z value). We try 

to correct this error by allowing the samples to shift a few time-steps to the left or to the 

right, if that will help with cross-correlation with other samples. The function performs 

the following steps  

• normalize all samples in such a way as to make their means (and optionally 

medians) the same  

• if multiple copies exist than  

o align multiple copies of each sample to each other  

o temporarily merge multiple copies of each sample to create a "super-

sample" vector with more features  

• align each sample to the mean of all samples  

• recalculate mean of all samples and repeat above step  

msc.mass.adjust function was split into two parts (one to calculate parameters and one 

to apply them) in order to give users more flexibility and information about what is done 

to the data. This split allows inspection, plotting and/or modification of shiftX, 

shiftY, scaleY parameters before data is modified. For example one can set shiftX to 

zero to perform normalization without mass adjustment or set shiftY to zero and scaleY 

to one to perform mass adjustment without normalization. Three function provided are:  

• msc.mass.adjust.calc - calculates and returns all the normalization and mass 

drift adjustment parameters  

• msc.mass.adjust.apply - performs normalization and mass drift adjustment 

using precalculated parameters  

• msc.mass.adjust - simple interface version of above 2 functions  

Value 



Functions msc.mass.adjust and msc.mass.adjust.apply return modified spectra in 

the same format and size as X. Functions msc.mass.adjust.calc returns list containing 

the following:  

shiftX matrix [nSamp x nCopy] - integer number of positions sample should be shifted 

to the right (+) or left (-)  

scaleY matrix [nSamp x nCopy] - multiply each sample in order to normalize it 

shiftY matrix [nSamp x nCopy] - subtract this number from scaled sample (if matching 

mediums) 

AvrSamp Use AvrSamp returned from train-set mass-adjustment to process test-set 

See Also 

• Part of msc.preprocess.run and msc.project.run pipelines.  

• Previous step in the pipeline is msc.mass.cut  

• Next step in the pipeline is either msc.peaks.find or msc.copies.merge  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

   

  # run on 3D input data using long syntax 

  out = msc.mass.adjust.calc (X) 

  Y   = msc.mass.adjust.apply(X, out$ShiftX, out$ScaleY, out$ShiftY) 

   

  # check what happened to means 

  Z   = cbind(colMeans(X), colMeans(Y)) 

  colnames(Z) = c("copy 1 before", "copy 2 before", "copy 1 after", 

"copy 2 after" ) 

  cat("Sample means after and after:\n") 

  Z 

   

  # check what happen to sample correlation 

  A = msc.sample.correlation(X, PeaksOnly=TRUE) 

  B = msc.sample.correlation(Y, PeaksOnly=TRUE) 

  cat("Mean corelation between two copies of the same sample:\n") 

  cat(" before: ", mean(A$innerCor)," after: ", mean(B$innerCor), "\n") 

  cat("Mean corelation between unrelated samples:\n") 

  cat(" before: ", mean(A$outerCor)," after: ", mean(B$outerCor), "\n") 

   

  # run on 2D input data using short syntax  

  # check what happened to means and medians 

  Y = msc.mass.adjust(X[,,1], scalePar=2) 

  Z = cbind(colMeans(X[,,1]), apply(X[,,1],2,median), colMeans(Y), 

apply(Y,2,median)) 

  colnames(Z) = c("means before", "medians before", "means after", 

"medians after" ) 

  Z 

  Y = msc.mass.adjust(X[,,1], scalePar=1) 



  Z = cbind(colMeans(X[,,1]), apply(X[,,1],2,median), colMeans(Y), 

apply(Y,2,median)) 

  colnames(Z) = c("means before", "medians before", "means after", 

"medians after" ) 

  Z 

   

  # mass adjustment for train and test sets, where test set is 

normalized in  

  # the same way as train set was 

  Xtrain = X[, 1:10,] 

  Xtest  = X[,11:20,] 

  out    = msc.mass.adjust.calc (Xtrain); 

  Xtrain = msc.mass.adjust.apply(Xtrain, out$ShiftX, out$ScaleY, 

out$ShiftY) 

  out    = msc.mass.adjust.calc (Xtest , AvrSamp=out$AvrSamp); 

  Xtest  = msc.mass.adjust.apply(Xtest , out$ShiftX, out$ScaleY, 

out$ShiftY)   

2.8 msc.peaks.find - Find Peaks of Mass Spectra 

Description 

Find Peaks in a Batch of Protein Mass Spectra (SELDI) Data.  

Usage 

msc.peaks.find(X, PeakFile=0, SNR=2, span=c(81,11), zerothresh=0.9)  

Arguments 

X Spectrum data either in matrix format [nFeatures x nSamples] or in 3D array 

format [nFeatures x nSamples x nCopies]. Row names (rownames(X)) store 

M/Z mass of each row.  

PeakFile optional filename. If provided than CSV file will be created in the same 

format as Ciphergen's peak-info file, with following columns of data: 

"Spectrum.Tag", "Spectrum.", "Peak.", "Intensity" and "Substance.Mass".  

SNR signal to noise ratio (z-score) criterion for peak detection. Similar to SoN 

variable in isPeak from PROcess package. 

span two moving window widths. Smaller one will be used for smoothing and 

local maxima finding. Larger one will be used for local variance estimation. 

Similar to span and sm.span variables in isPeak from PROcess package. 

zerothresh Intensity threshold criterion for peak detection. Positive numbers in range 

[0,1), like default 0.9, will be used to calculate a single threshold used for all 

samples using quantile(X,zerothresh) equation. Negative numbers in 

range (-1, 0) will be used to calculate threshold for each single sample i 

using quantile(X[i,],-zerothresh). Similar to zerothrsh variable in 

isPeak from PROcess package.  



Details 

Peak finding is done using the following algorithm:  

x  = X[j,]  

thresh = 
if(zerothresh>=0) quantile(X,zerothresh) else quantile(x,-

zerothresh)  

sig  = runmean(x, span[2])  

rMax  = runmax (x, span[2])  

rAvr  = runmed (x, span[1])  

rStd  = runmad (x, span[1], center=rAvr)  

peak  = (rMax == x) & (sig > thresh) & (sig-rAvr > SNR*rStd)  

What means that a peak have to meet the following criteria to be classified as a peak:  

• be a local maxima in span[2] neighborhood  

• smoothed sample (sig) is above user defined threshold zerothresh  

• locally calculated z-score (see http://mathworld.wolfram.com/z-Score.html) of the 

signal is above user defined signal-to-noise ratio  

It is very similar to the isPeak and getPeaks functions from PROcess library (ver 1.3.2) 

written by Xiaochun Li. For example getPeaks(X, PeakFile, SoN=SNR, 
span=span[1], sm.span=span[2], zerothrsh=zerothresh, area.w=0.003, 

ratio=0) would give very similar results as msc.peaks.find the differences include: 

speed ( msc.peaks.find uses much faster C-level code), different use of signal-to-noise-

ratio variable, and msc.peaks.find does not do or use area calculations.  

Value 

A data frame, in the same format as data saved in peakinfofile, have five components:  

Spectrum.Tag sample name of each peak 

Spectrum. sample number of each peak 

Peak. peak number within each sample 

Intensity peak height (intensity) 

Substance.Mass x-axis position, or corresponding mass of the peak measured in M/Z, 

which were extracted from row names of the X matrix. 

See Also 

• Part of msc.preprocess.run and msc.project.run pipelines.  

• Previous step in the pipeline was msc.mass.adjust  

• Functions msc.peaks.align or pk2bmkr can be used to align peaks from 

different samples in order to find biomarkers.  



• Peak data can be read and writen by msc.peaks.read.csv and 

msc.peaks.write.csv.  

• Functions isPeak and getPeaks from PROcess package are very similar.  

• Uses runmax, runmean, runmed, runmad functions.  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

 

  # Find Peaks 

  Peaks = msc.peaks.find(X) 

  cat(nrow(Peaks), "peaks were found in", Peaks[nrow(Peaks),2], 

"files.\n") 

2.9 msc.peaks.align - Align Peaks of Mass Spectra into a 
"Biomarker" Matrix 

Description 

Align peaks from multiple protein mass spectra (SELDI) samples into a single 

"biomarker" matrix  

Usage 

  msc.peaks.align(Peaks, BmrkFile=0, SampFrac=0.3, BinSize=c(0.002, 

0.008), ...) 

  msc.peaks.alignment(S,  M,  H, Tag=0, SampFrac=0.3, BinSize=c(0.002, 

0.008), ...) 

Arguments 

Peaks Peak information. Could have two formats: a filename where to find the data, 

or the data itself. In the first case, Peaks is string containing path to a file 

saved by msc.peaks.find, getPeaks (from PROcess package), or by other 

software. In the second case, it is a data-frame in the same format as returned 

by msc.peaks.find. A third way to pass the same input data is through use of 

S, M, H and Tag variables (described below) used by msc.peaks.alignment 

function.  

S Peak sample number. Unique number of the sample the peak belongs to. 

Likely to come from Peaks$Spectrum. . 

M Peak center mass. Position of the peak on the x-axis. Likely to come from 

Peaks$Substance.Mass. 

H Ppeak height. Likely to come from Peaks$Intensity. 

Tag Peak sample name. Unique name of the sample the peak belongs to. Likely to 



come from Peaks$Spectrum.Tag. Optional since is used only to set column-

names of output data. 

BmrkFile Optional filename. If provided than CSV file will be created in the same 

format as Ciphergen's biomarker file, with spectra (samples) as rows, and 

biomarkers as columns (features). 

SampFrac After peak alignment, bins with fewer peaks than SampFrac*nSamp are 

removed. 

BinSize Upper and lower bound of bin-sizes, based on expected experimental variation 

in the mass (m/z) values. Size of any bin is measured as (R-L)/mean(R,L) 

where L and R are masses (m/z values) of left and right boundaries. All 

resulting bin sizes will all be between BinSize[1] and BinSize[2]. Since 

SELDI data is often assumed to have  

+- 

3% mass drift than a good bin size is twice that number (0.006). Same as 

BinSize variable in msc.peaks.clust, except for default.  

... Two additional parameters that can be passed to msc.peaks.clust are mostly 

for expert users fine-tuning the code:  

• tol - gaps bigger than tol*max(gap) are assumed to be the same size 

as the largest gap. See details.  

• verbose - boolean flag turns debugging printouts on.  

Details 

Two interfaces were provided to the same function:  

• msc.peaks.alignment is a lower level function with more detailed inputs and 

outputs. Possibly easier to customize for other purposes than processing SELDI 

data.  

• msc.peaks.align is a higher level function with simpler interface customized for 

processing SELDI data.  

This function align peaks from different samples into bins in such a way as to satisfy 

constraints in following order:  

• bin sizes are in between BinSize[1] and BinSize[2]  

• no two peaks from the same sample are present in the same bin  

• bins are split in such a way as to minimize bin size and maximize spaces between 

bins  

• if there are multiple, equally good, ways to split a bin than bin is split in such a 

way as to minimize number of repeats on each smaller sub-bin  



The algorithm used does the following:  

• Store mass and sample number of each peak into an array  

• Concatenate arrays from all samples and sort them according to mass  

• Group sets of peaks into subsets (bins). Each subset will consist of peaks from 

different spectra that have similar mass. That is done by puting all peaks into a 

single bin and recursivly going through the following steps:  

o Check size of the current bin: if it is too small than we are done, if it is too 

big than it will be split and if it is already in the desired range than it will 

be split only if multiple peaks from the same sample are present.  

o If bin needs to be split than find the biggest gap between peaks  

o If multiple gaps were found with the same size as the largest gap (or 

within tol tolerance from it) than minimizes number of multiple peaks 

from the same sample after cut  

o Divide the bin into two sub-bins: to the left and to the right of the biggest 

gap  

o Recursively repeat the above four steps for both sub-bins  

• Store peaks into 2D array (bins by samples)  

• Remove bins with fewer peaks than SampFrac*nSamp  

The algorithm for peak alignment is described as recursive algorithm but the actual 

implementation uses internal stack, instead in order to increase speed.  

Value 

Bmrks Biomarker matrix containing one sample per column and one biomarker per 

row. If a given sample does not have a peak in some bin than NA is inserted. 

BinBounds Mass of left-most and right-most peak in the bin 

References 

The initial version of this function started as implementation of algorithm described on 

webpage of Virginia Prostate Center (at Virginia Medical School) documenting their 

PeakMiner Software. See http://www.evms.edu/vpc/seldi/peakminer.pdf  

See Also 

• Input comes most Likely from: msc.peaks.find, getPeaks (from PROcess 

package), or Ciphergen's software  

• Output can be processed further by: msc.biomarkers.fill or 
msc.copies.merge  

• Part of msc.preprocess.run pipeline  

• Uses msc.peaks.clust function to do most of the work  

• Uses msc.peaks.read.csv function to read peak file  

• Uses msc.biomarkers.write.csv function to save results  



• Function pk2bmkr from PROcess package performs similar function.  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

 

  # Find and Align peaks 

  Peaks = msc.peaks.find(X) 

  cat(nrow(Peaks), "peaks were found in", Peaks[nrow(Peaks),2], 

"files.\n") 

  Y = msc.peaks.align(Peaks) 

  print( t(Y$Bmrks) , na.print=".",  digits=2) 

2.10 msc.peaks.clust - Clusters Peaks of Mass Spectra 

Description 

Clusters peaks from multiple protein mass spectra (SELDI) samples  

Usage 

  msc.peaks.clust(dM, S, BinSize=c(0,sum(dM)), tol=0.97, verbose=FALSE)  

Arguments 

S Peak sample number, used to identify the spectrum the peak come from. 

dM Distance between sorted peak positions (masses, m/z). 

BinSize Upper and lower bound of bin-sizes, based on expected experimental variation 

in the mass (m/z) values. Size of any bin is measured as (R-L)/mean(R,L) 

where L and R are masses (m/z values) of left and right boundaries. All resulting 

bin sizes will be between BinSize[1] and BinSize[2]. Default is 

c(0,sum(dM)) which ensures that no BinSizes is not being used. 

tol gaps bigger than tol*max(gap) are assumed to be the same size as the largest 

gap. See details. 

verbose boolean flag turns debugging printouts on. 

Details 

This is a low level function used by msc.peaks.alignment and not intended to be 

directly used by many users. However it might be usefull for other code developers. It 

clusters peaks from different samples into bins in such a way as to satisfy constraints in 

following order:  

• bin sizes are in between BinSize[1] and BinSize[2]  



• no two peaks from the same sample are present in the same bin  

• bins are split in such a way as to minimize bin size and maximize spaces between 

bins  

• if there are multiple, equally good, ways to split a bin than bin is split in such a 

way as to minimize number of repeats on each smaller sub-bin  

Value 

The output is binary array of the same size as dM and S where left boundaries of each 

clusters-bin (biomarker) are marked 

References 

The initial version of this function started as implementation of algorithm described on 

webpage of Virginia Prostate Center (at Virginia Medical School) documenting their 

PeakMiner Software. See http://www.evms.edu/vpc/seldi/peakminer.pdf  

See Also 

• Part of msc.preprocess.run and msc.project.run pipelines.  

• Previous step in the pipeline was msc.peaks.find  

• Next step in the pipeline is msc.peaks.align and msc.biomarkers.fill  

• Part of msc.peaks.align function  

Examples 

  # example with simple made up data (18 peaks, 3 samples) 

  M = c(1,5,8,12,17,22, 3,5,7,11,14,25, 1, 5, 7,10,17,21) # peak 

position/mass 

  S = c(1,1,1, 1, 1, 1, 2,2,2, 2, 2, 2, 3, 3, 3, 3, 3, 3) # peak's 

sample number 

  idx = sort(M, index=TRUE)$ix;  # sort peaks by mass 

  M   = M[idx];               # sorted mass 

  S   = S[idx];               # arrange sample numbers in the same 

order 

  bin = msc.peaks.clust(diff(M), S, verbose=TRUE)  

  rbind(S,M,bin)              # show results 

   

  # use the results to align peaks into biomarkers matrix 

  Bmrks = matrix(NA,sum(bin),max(S)); # init feature (biomarker) matrix 

  bin   = cumsum(bin);                # find bin numbers for each peak 

in S array 

  for (j in 1:length(S))              # Bmrks usually store height H of 

each peak 

    Bmrks[bin[j], S[j]] =  1;         # but in this example it will be 

"1" 

  Bmrks 



2.11 msc.peaks.read.csv & msc.peaks.write.csv - Read 
and Write Mass Spectra Peaks in CSV Format 

Description 

Functions to read and write CSV (comma separated values) text files containing peaks in 

the format used by Ciphergen's peak file.  

Usage 

  X = msc.peaks.read.csv(fname) 

  msc.peaks.write.csv(fname, X) 

Arguments 

fname either a character string naming a file or a connection. 

X Peak information. A data-frame in the same format as returned by 

msc.peaks.find, containing five components:  

• Spectrum.Tag - sample name of each peak  

• Spectrum. - sample number of each peak  

• Peak. - peak number within each sample  

• Intensity - peak height (intensity)  

• Substance.Mass - x-axis position, or corresponding mass of the peak 

measured in M/Z 

Value 

Function msc.peaks.read.csv returns peak information data frame. See argument X 

above. Function msc.peaks.write.csv does not return anything. 

See Also 

msc.peaks.find and msc.peaks.align  

Examples 

  example("msc.peaks.find") # create peak data 

  X = Peaks                 # Peak data is stored in variable 'Peaks' 

  msc.peaks.write.csv("peaks.csv", X) 

  X = msc.peaks.read.csv("peaks.csv") 

  file.remove("peaks.csv") 

  stopifnot(X==Peaks) 



2.12 msc.biomarkers.fill - Fill Empty Spaces in 
Biomarker Matrix 

Description 

Fill empty spaces (NA's) in biomarker matrix created by msc.peaks.align  

Usage 

msc.biomarkers.fill( X, Bmrks, BinBounds, FillType=0.9, BmrkFile=0) 

Arguments 

X Spectrum data either in matrix format [nFeatures x nSamples] or in 3D array 

format [nFeatures x nSamples x nCopies]. Row names (rownames(X)) store 

M/Z mass of each row.  

Bmrks biomarker matrix containing one sample per column and one biomarker per 

row 

BinBounds position (mass) of left-most and right-most peak in each bin 

FillType how to fill empty spaces in biomarker data?  

• if 0<=FillType<=1 than fill spaces with 

quantile(probs=FillType). For example: if FillType=1/2 than 

medium will be used, if FillType=1 than maximum value will be 

used, if FillType=0.9 than maximum will be used after discarding 

10% of "outliers"  

• if FillType<0 than empty spaces will not be filled and NA's will 

remain  

• if FillType==2 than X value closest to the center of the bin will be 

used  

• if FillType==3 empty spaces will be set to zero  

BmrkFile Optional filename. If provided than CSV file will be created in the same 

format as Ciphergen's biomarker file, with spectra (samples) as rows, and 

biomarkers as columns. 

Details 

This function attepts to correct a problem which is a side-effect of msc.peaks.align 

function. Namely numerous NA's in biomarker data, each time when some peak was 

found only in some of the samples. msc.peaks.align already removed the most 

problematic features using SampFrac variable, but likelly a lot of NA's remain and they 

can cause problem for some classification algorithms.  



Value 

Data in the same format and size as Bmrks 

Note 

The whole idea of filling spaces in biomarker matrix is a little bit suspect since we are 

mixing proverbial apples and oranges. However, it might be better than the other options 

of filling empty spaces with zeros or keeping NA's.  

See Also 

• Part of msc.preprocess.run and msc.project.run pipelines.  

• Input comes most likely from: msc.peaks.align, or from Ciphergen's software  

• Output can be processed further by msc.copies.merge  

• Biomarkers matrix can be read and writen by msc.biomarkers.read.csv and 

msc.biomarkers.write.csv.  

• Function pk2bmkr from PROcess package lso perform similar function.  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

  Y = msc.peaks.align(msc.peaks.find(X)) 

  dim(Y$Bmrks) 

  print( Y$Bmrks , na.print=".",  digits=2) 

   

  # run msc.biomarkers.fill 

  Z = msc.biomarkers.fill( X, Y$Bmrks, Y$BinBounds) 

  dim(Z) 

  print( Z[,,1] , na.print=".",  digits=2) 

  print( Z[,,2] , na.print=".",  digits=2) 

   

  # run msc.biomarkers.fill with other FillType 

  Z = msc.biomarkers.fill( X, Y$Bmrks, Y$BinBounds, FillType=2) 

  

msc.biomarkers.read.csv {caMassClass} R Documentation 

2.13 msc.biomarkers.read.csv & 
msc.biomarkers.write.csv - Read and Write 
biomarker matrix in CSV format 

Description 



Functions to read and write CSV (comma separated values) text files containing 

biomarkers (aligned peaks) in the format used by Ciphergen's biomarker file, with spectra 

(samples) as rows, and biomarkers as columns (features).  

Usage 

  X = msc.biomarkers.read.csv(fname) 

  msc.biomarkers.write.csv(fname, X) 

Arguments 

fname either a character string naming a file or a connection. 

X biomarker matrix containing one sample per column and one biomarker per row. 

Notice that this data is in format which is a transpose of data in CSV file. 

Value 

Function msc.biomarkers.read.csv returns peak information data frame. See argument 

X above. Function msc.biomarkers.write.csv does not return anything. 

See Also 

msc.biomarkers.fill  

Examples 

  example("msc.peaks.align", verbose=FALSE) # create biomarkers data 

  X = Y$Bmrks   #  biomarkers data is stored in variable 'Y$Bmrks' 

  msc.biomarkers.write.csv("biomarkers.csv", X) 

  Y = msc.biomarkers.read.csv("biomarkers.csv") 

  file.remove("biomarkers.csv") 

  stopifnot( all(X==Y, na.rm=TRUE) ) 

2.14 msc.copies.merge - Merge Multiple Copies of 
Mass Spectra Samples 

Description 

Protein mass spectra (SELDI) samples are sometimes scanned multiple times in order to 

reduce hardware or software based errors. msc.copies.merge function is used to merge, 

concatenate, and/or average all of those copies together in preparation for classification.  

Usage 

msc.copies.merge( X, mergeType, PeaksOnly=TRUE)  



Arguments 

X Spectrum data in 3D array format [nFeatures x nSamples x nCopies]. Row 

names (rownames(X)) store M/Z mass of each row. If X is in matrix format 

[nFeatures x nSamples] nothing will be done.  

mergeType an integer variable in [0,11] range, telling how to merge samples and what to 

do with bad copies:  

• 0 - do nothing  

• add 1 - if all original copies are to be concatenated as separate 

samples  

• add 2 - if copies are to be averaged and the average added as a 

separate sample  

• add 4 - if for each sample the worst copy is to be deleted  

• add 8 - if for each sample in case of large differences between copies, 

a single bad copy of a sample is to be replaced with the best copy. Not 

to be used with previous option. See details.  

PeaksOnly This variable is being passed to function msc.sample.correlation. Set it to 

TRUE in case of raw spectra and switch to FALSE in case of data where only 

peaks (biomarkers) are present. 

Details 

Quality of a sample is measured by calculating for each copy of each sample two 

variables: inner correlation (average correlation between multiple copies of the same 

sample) and outer correlation (average correlation between each sample and every other 

sample within the same copy). Inner correlation measures how similar copies are to each 

other and outer correlation measures how similar each copy is to everybody else. For 

example in case of experiment using SELDI technology to distinguish cancerous samples 

and non-cancerous samples one can assume that most of the proteins present in both 

cancerous and non-cancerous samples will be the same. In that case one will expect high 

correlation between samples and even higher correlation between copies of the same 

sample  

if mergeType/4 (mergeType %/% 4) is  

• 0 - all copies are kept  

• 1 - if inner correlation is smaller than outer correlation, or in other words, if a 

signature is more similar to other signatures than to other copies of the same 

signature, than there is some problem with that signature. In that case that bad 

signature can be replaced with the best copy of the signature.  

• 2 - rate each copy of each sample using score=outer_correlation + 

inner_correlation measure. Delete worst copy.  



Option 2 is more suitable in case of data with a lot of copies, when we can afford 

dropping one copy. Option 1 is designed to patch the most serious problems with the 

data.  

There are also four merging options, if mergeType mod 4 (mergeType %% 4) is  

• 0 - no merging is done to the data and it is left as 3D array  

• 1 - all copies are concatenated X = cbind(X[,,1], X[,,2], ..., 

X[,,nCopy]) so they seem as separate samples  

• 2 - all copies are averaged X = (X[,,1] + X[,,2] + ... + 
X[,,nCopy])/nCopy)  

• 3 - all copies are first averaged and than concatenated with extra average copy X 
= cbind(X[,,1], X[,,2], ..., X[,,nCopy], Xavr)  

In preparation for classification one can use multiple copies in several ways: option 2 

above improves (one hopes) accuracy of each sample, while options 1 and 3 increase 

number of samples available during classification. So the choice is: do we want a lot of 

samples during classification or fewer, better samples?  

The best option of mergeType depends on kind of data.  

• 0 if data has single copy.  

• 1+2+4 will produce the largest number of samples since we will keep all the 

copies and an average of all the copies  

• 2+8 will produce single most accurate sample from multiple copies (usually if 

more than 2 copies are present) since we will delete outliers before averaging all 

the copies  

Value 

Return matrix containing features as rows and samples as columns, unless mergeType is 

0,4, or 8 when no merging is done and data is returned in same or similar format as the 

input format. 

See Also 

• Part of msc.preprocess.run and msc.project.run pipelines.  

• Previous step in the pipeline was msc.mass.adjust or peak finding functions: 

msc.peaks.find, msc.peaks.align, and msc.biomarkers.fill  

• Next step in the pipeline is data classification msc.classifier.test  

• Uses msc.sample.correlation  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 



  load("Data_IMAC.Rdata") 

   

  # run msc.copies.merge 

  Y = msc.copies.merge(X, 1+2+4) 

  colnames(Y) 

2.15 msc.classifier.test - Test a Classifier through 
Cross-validation 

Description 

Test Classifier through Cross-validation. Common interface for Cross-validation of 

several standard classifiers. Includes feature selection and feature scaling steps. Allows to 

specify that some test samples are multiple copies of the same sample, and should return 

the same label.  

Usage 

 msc.classifier.test( X, Y, iters=50, SplitRatio=2/3, verbose=FALSE, 

                  RemCorrCol=0, KeepCol=0, prior=1, same.sample=NULL, 

                  ScaleType=c("none", "min-max", "avr-std", "med-mad"), 

                  method=c("svm", "nnet", "lda", "qda", "LogitBoost", 

"rpart"), ...)  

Arguments 

X A matrix or data frame with training data. Rows contain samples and 

columns contain features/variables 

Y Class labels for the training data samples. A response vector with one label 

for each row/component of x. Can be either a factor, string or a numeric 

vector. Labels with 'NA' value signify test data-set. 

iters Number of iterations. Each iteration consist of splitting the data into train 

and test sets, performing the classification and storing results 

SplitRatio Splitting ratio:  

• if (0<=SplitRatio<1) then SplitRatio fraction of points from Y 

will be set toTRUE  

• if (SplitRatio==1) then one random point from Y will be set to 

TRUE  

• if (SplitRatio>1) then SplitRatio number of points from Y will 

be set to TRUE  

RemCorrCol See msc.classifier.run. 

KeepCol See msc.classifier.run. 

ScaleType See msc.classifier.run. 



prior See msc.classifier.run. 

same.sample See msc.classifier.run. 

method See msc.classifier.run. 

verbose boolean flag turns debugging printouts on. 

... Additional parameters to be passed to classifiers. See method for 

suggestions.  

Details 

This function follows standard cross-validation steps:  

• Class labels Y are used to divide data X into train set (with known labels) and test 

set (labels are unknown and will be calculated)  

• For number of iterations repeat the following steps:  

o split train data into temporary train and test sets using msc.sample.split 

function  

o train and test the chosen classifier using temporary train and test data sets 

and msc.classifier.run function  

• Calculate the overall performance of the calassifer  

• Train the classifier using the whole train data set (all labaled samples)  

• Use this classifier to predict values of the whole test data set (all samples without 

label - NA.)  

Value 

Y Predicted class labels. If there were any unknown samples in input data, marked by 

NA's in input Y, than output Y will only hold prediction of those samples, otherwise 

prediction will be made for all samples.  

Res Holds fraction of correct prediction during cross-validation for each iteration. 

mean(Res) will give you average acuracy.  

Tabl Contingency table of predictions shows all the input label compared to output labels 

Note 

This function is not fully tested and might be changed in future versions  

See Also 

• Input comes most likely from msc.preprocess.run and/or msc.project.run 

functions.  

• Uses msc.classifier.run, msc.features.select and msc.features.scale 

functions.  

• Best classifier parameter set can be found by tune function from e1071 package.  



• Uses variety of classification algorithms: svm, nnet, LogitBoost, lda, qda, 
rpart  

Examples 

  data(iris) 

  A = msc.classifier.test(iris[,-5],iris[,5], method="LogitBoost", 

nIter=2)  

  A 

  cat("correct classification in",100*mean(A$Res),"+-

",100*sd(A$Res),"percent of cases\n") 

2.16 msc.classifier.run - Train and Test Chosen 
Classifier. 

Description 

Common interface for training and testing several standard classifiers. Includes feature 

selection and feature scaling steps. Allows to specify that some test samples are multiple 

copies of the same sample, and should return the same label.  

Usage 

msc.classifier.run( xtrain, ytrain, xtest, ret.prob=FALSE,  

                  RemCorrCol=0, KeepCol=0, prior=1, same.sample=NULL, 

                  ScaleType=c("none", "min-max", "avr-std", "med-mad"), 

                  method=c("svm", "nnet", "lda", "qda", "LogitBoost", 

"rpart"), ...)  

Arguments 

xtrain A matrix or data frame with training data. Rows contain samples and 

columns contain features/variables 

ytrain Class labels for the training data samples. A response vector with one label 

for each row/component of x. Can be either a factor, string or a numeric 

vector.  

xtest A matrix or data frame with test data. Rows contain samples and columns 

contain features/variables 

ret.prob if set to TRUE than the a-posterior probabilities for each class are returned 

as attribute called "probabilities". 

same.sample optional parameter which allows to specify that some (or all) test samples 

have multiple copies which should be used to predict a single label for all 

of them. Can be either a factor, string or a numeric vector, with unique 

values for different samples and identical values for copies of the same 

sample. 

RemCorrCol If non-zero than some of the highly correlated columns are removed using 



msc.features.remove function with ccMin=RemCorrCol. 

KeepCol If non-zero than columns with low AUC are removed.  

• if KeepCol smaller than 0.5 - do nothing  

• if KeepCol in between [0.5, 1] - keep columns with AUC bigger 

than KeepCol  

• if KeepCol bigger than one - keep top "KeepCol" number of 

columns  

ScaleType Optional parameter, if provided than following types are recognized  

• "none" - no scaling is performed  

• "min-max" - data minimum is mapped to 0 and maximum is 

mapped to 1  

• "avr-std" - data is mapped to zero mean and unit variance  

• "med-mad" - data is mapped to zero median and unit mad (median 

absolute deviation)  

prior class weights. following types are recognized  

• prior==1 - all samples in all classes have equal weight (default)  

• prior==2 - all classes have equal weight  

• prior is a vector - a named vector of weights for the different 

classes, used for asymetric class sizes.  

method classifier to be used. Following ones are recognized (followed by some 

parameters that could be passed through ... :  

• "svm" - see svm from e1071 package. Possible parameters: cost, 
gamma  

• "nnet" - see nnet from nnet package. Possible parameters: size, 

decay, maxit  

• "LogitBoost" - see LogitBoost. Possible parameter: nIter  

• "lda" - see lda from MASS package. Possible parameters: method  

• "qda" - see qda from MASS package. Possible parameters: method  

• "rpart" - see rpart from rpart package. Possible parameters: 

minsplit, cp, maxdepth  

... Additional parameters to be passed to classifiers. See method for 

suggestions.  

Details 

This function performs the following steps:  



• Remove highly correlated columns and columns with low AUC with 

msc.features.select function  

• Scale each feature separatly using msc.features.scale function  

• Train chosen classifier using xtrain and ytrain  

• Predict labels of xtest using trained model  

• If same.sample variable is given than synchronise predicted labels in such a way 

that all copies of the same sample return the same label.  

• Return labels. If ret.prob=TRUE then return a-posterior probabilities as well.  

Value 

Predicted class labels for each sample in xtest. If ret.prob=TRUE than the a-posterior 

probabilities of each sample belonging to each class are returned as attribute called 

"probabilities". The returned probabilities do not take into account same.sample 

variable, used to synchronize predicted labels. 

Note 

This function is not fully tested and might be changed in future versions  

References 

• "A Practical Guide to Support Vector Classification" by Chih-Wei Hsu, Chih-

Chung Chang, and Chih-Jen Lin 

(http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf)  

See Also 

• Used by msc.classifier.test function.  

• Best classifier parameter set can be found by tune function from e1071 package.  

• Uses msc.features.select and msc.features.scale functions.  

• Uses variety of classification algorithms: svm, nnet, LogitBoost, lda, qda, 
rpart  

Examples 

  data(iris) 

  mask  = msc.sample.split(iris[,5], SplitRatio=1/4) # very few points 

to train 

  xtrain = iris[ mask,-5]  # use output of msc.sample.split to ... 

  xtest  = iris[!mask,-5]  # create train and test subsets 

  ytrain = iris[ mask, 5]  

  ytest  = iris[!mask, 5]  

  table(ytrain, msc.classifier.run(xtrain,ytrain,xtrain, method="svm") 

) 

  table(ytrain, msc.classifier.run(xtrain,ytrain,xtrain, 

method="LogitBoost") ) 



  table(ytrain, msc.classifier.run(xtrain,ytrain,xtrain, method="nnet") 

) 

  table(ytrain, msc.classifier.run(xtrain,ytrain,xtrain, method="lda") 

) 

  table(ytrain, msc.classifier.run(xtrain,ytrain,xtrain, method="qda") 

) 

2.17 msc.sample.split - Split Data into Test and Train 
Set 

Description 

Split data from vector Y into two sets in predefined ratio while preserving relative ratios 

of different labels in Y. Used to split the data used during classification into train and test 

subsets.  

Usage 

msc.sample.split( Y, SplitRatio = 2/3, group = NULL )  

Arguments 

Y Vector of data labels. If there are only a few labels (as is expected) than 

relative ratio of data in both subsets will be the same. 

SplitRatio Splitting ratio:  

• if (0<=SplitRatio<1) then SplitRatio fraction of points from Y 

will be set toTRUE  

• if (SplitRatio==1) then one random point from Y will be set to 

TRUE  

• if (SplitRatio>1) then SplitRatio number of points from Y will 

be set to TRUE  

group Optional vector/list used when multiple copies of each sample are present. 

In such a case group contains unique sample labels, marking all copies of 

the same sample with the same label, and the function tries to place all 

copies in either train or test subset. If provided than has to have the same 

length as Y. 

Value 

Returns logical vector of the same length as Y with random SplitRatio*length(Y) 

elements set to TRUE. 

See Also 



• Used by msc.classifier.test function.  

• Similar to sample function.  

• Variable group is used in the same way as f argument in split and INDEX 

argument in tapply  

Examples 

  library(MASS) 

  data(cats)   # load cats data 

  Y = cats[,1] # extract labels from the data 

  msk = msc.sample.split(Y, SplitRatio=3/4) 

  table(Y,msk) 

  t=sum( msk)  # number of elements in one class 

  f=sum(!msk)  # number of elements in the other class 

  stopifnot( round((t+f)*3/4) == t ) # test ratios 

   

  # example of using group variable 

  g = rep(seq(length(Y)/4), each=4); g[48]=12; 

  msk = msc.sample.split(Y, SplitRatio=1/2, group=g) 

  table(Y,msk) # try to get correct split ratios ... 

  split(msk,g) # ... while keeping samples with the same group label 

together 

 

  # test results 

  print(paste( "All Labels numbers: total=",t+f,", train=",t,", 

test=",f, 

        ", ratio=", t/(t+f) ) ) 

  U = unique(Y)       # extract all unique labels 

  for( i in 1:length(U)) {  # check for all labels 

    lab = (Y==U[i])   # mask elements that have label U[i] 

    t=sum( msk[lab])  # number of elements with label U[i] in one class 

    f=sum(!msk[lab])  # number of elements with label U[i] in the other 

class  

    print(paste( "Label",U[i],"numbers: total=",t+f,", train=",t,", 

test=",f,  

                 ", ratio=", t/(t+f) ) ) 

  } 

   

  # use results 

  train = cats[ msk,2:3]  # use output of msc.sample.split to ... 

  test  = cats[!msk,2:3]  # create train and test subsets 

  z = lda(train, Y[msk])  # perform classification 

  table(predict(z, test)$class, Y[!msk]) # predicted & true labels 

   

  # see also LogitBoost example 

2.18 msc.features.select - Reduce Number of Features 
Prior to Classification 

Description 

Select subset of individual features that are potentially most useful for classification.  



Usage 

msc.features.select( x, y, RemCorrCol=0.98, KeepCol=0.6) 

Arguments 

x A matrix or data frame with training data. Rows contain samples and 

columns contain features/variables 

y Class labels for the training data samples. A response vector with one label 

for each row/component of x. Can be either a factor, string or a numeric 

vector. 

RemCorrCol If non-zero than some of the highly correlated columns are removed using 

msc.features.remove function with ccMin=RemCorrCol. 

KeepCol If non-zero than columns with low AUC are removed.  

• if KeepCol smaller than 0.5 - do nothing  

• if KeepCol in between [0.5, 1] - keep columns with AUC bigger than 
KeepCol  

• if KeepCol bigger than one - keep top KeepCol number of columns  

Details 

This function reduces number of features in the data prior to classification, using 

following steps:  

• calculate AUC measure for each feature using colAUC  

• remove some of the highly correlated neighboring columns using 

msc.features.remove function.  

• remove columns with low AUC  

This function finds subset of individual features that are potentially most useful for 

classification, and each feature is rated individually. However, often set of two or more 

very poor individual features can produce a superior classifier. So, this function should be 

used with care. I found it very useful when classifying raw protein mass spectra (SELDI) 

data, for reducing dimensionality of the data from 10 000's to 100's prior of classification, 

instead of peak-finding (see msc.peaks.find).  

Value 

Vector of column indexes to be kept. 

See Also 

• Used by msc.classifier.test function.  



• Uses colAUC, msc.features.remove and msc.features.scale functions.  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

   

  X = t(X[,,1]) 

  cidx = msc.features.select(X, SampleLabels, KeepCol=0.7) 

  cat(length(cidx),"features were selected out 

of",ncol(X),"min(auc)=0.7\n") 

  cidx = msc.features.select(X, SampleLabels, KeepCol=400) 

  cat(length(cidx),"features were selected out of",ncol(X),"\n") 

  cat(" min(auc)=", min(colAUC(X[,cidx], SampleLabels)),"\n") 

  Y = X[,cidx] 

2.19 msc.features.remove - Remove Highly Correlated 
Features 

Description 

Remove Highly Correlated Features. The function checks neighbor features looking for 

highly correlated ones and removes one of them. Used in order to drop dimensionality of 

the data.  

Usage 

msc.features.remove(Data, Auc, ccMin=0.9, verbose=FALSE) 

Arguments 

Data Data containing one sample per row and one feature per column. 

Auc A measure of usefulness of each column/feature, used to choose which one of 

two highly correlated columns to remove. Usually a measure of discrimination 

power of each feature as measured by colAUC, student t-test or other method. 

See details. 

ccMin Minimum correlation coefficient of "highly correlated" columns. 

verbose Boolean flag turns debugging printouts on. 

Details 

If colAUC was used and there were more than two classes present than Auc is a matrix 

with multiple measurments for each feature. In such a case Auc = apply(Auc, 2, 

mean) is run in order to extract a single measure per feature. If other measures are 

desired, like Auc = apply(Auc, 2, max), than they should be called beforehand.  



Value 

Vector of column indexes to be kept. 

See Also 

• Used by msc.classifier.test and msc.features.select functions.  

• Uses colAUC  

Examples 

  # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

   

  X = t(X[,,1]) 

  auc = colAUC(X,SampleLabels) 

  quantile(auc) 

  cidx = msc.features.remove(X, auc, verbose=TRUE) 

  Y = X[,cidx] 

2.20 msc.features.scale - Scale Classification Data 

Description 

Scale features of the data to be used for classification. Scaling factors are extracted from 

each column/feature of the train data-set and applied to both train and test sets.  

Usage 

msc.features.scale( xtrain, xtest, type = c("min-max", "avr-std", "med-

mad")) 

Arguments 

xtrain A matrix or data frame with train data. Rows contain samples and columns 

contain features/variables 

xtest A matrix or data frame with test data. Rows contain samples and columns contain 

features/variables 

type Following types are recognized  

• "min-max" - data minimum is mapped to 0 and maximum is mapped to 1  

• "avr-std" - data is mapped to zero mean and unit variance  

• "med-mad" - data is mapped to zero median and unit mad (median 

absolute deviation)  



Details 

Many classification algorithms perform better if input data is scaled beforehand. Some of 

them perform scaling internally (for example svm), but many don't. For some it makes no 

difference (for example rpart or LogitBoost).  

In case xtrain contains NA values or infinities all non-finite numbers are omited from 

scaling parameter calculations.  

Value 

xtrain A matrix or data frame with scaled train data. 

xtest A matrix or data frame with scaled test data.  

See Also 

Used by msc.classifier.test and msc.features.select functions.  

Examples 

  library(e1071) 

  data(iris) 

  mask  = msc.sample.split(iris[,5], SplitRatio=1/4) # very few points 

to train 

  xtrain = iris[ mask,-5]  # use output of msc.sample.split to ... 

  xtest  = iris[!mask,-5]  # create train and test subsets 

  ytrain = iris[ mask, 5]  

  ytest  = iris[!mask, 5]  

  x = msc.features.scale(xtrain, xtest)   

  model = svm(x$xtrain, ytrain, scale=FALSE) 

  table(predict(model, x$xtest), ytest) 

  model = svm(xtrain, ytrain, scale=FALSE) 

  table(predict(model, xtest), ytest) 

2.21 msc.sample.correlation - Sample Correlation 

Description 

Calculates correlations between different samples and correlations between different 

copies of the same sample  

Usage 

msc.sample.correlation(X, PeaksOnly=FALSE) 

Arguments 



X Spectrum data either in matrix format [nFeatures x nSamples] or in 3D array 

format [nFeatures x nSamples x nCopies]. Row names (rownames(X)) store 

M/Z mass of each row.  

PeaksOnly Should only peaks be used in calculating the correlation? In case of raw mass 

spectra data it does not make much sense to calculate correlation of "valleys" 

between peaks so one can set this flag to TRUE and only points above sample 

mean will be used. 

Details 

Function calculates for each copy of each sample two variables:  

• inner correlation - average correlation between multiple copies of the same 

sample. Inner correlation measures how similar copies are to each other. For 

example innerCor[iSamp,iCopy] measures average correlation between 

X[,iSamp,iCopy] and all other copies of that sample. In case of one copy of the 

data innerCor is set to one. In case of two copies 

innerCor[iSamp,1]=innerCor[iSamp,2] =cor(X[,iSamp,1],X[,iSamp,2]). 

In case of 3 copies innerCor[iSamp,1] = (cor(X[,iSamp,1],X[,iSamp,2]) + 

cor(X[,iSamp,1],X[,iSamp,3]))/2 ,etc.  

• outer correlation - average correlation between each sample and every other 

sample within the same copy. Outer correlation measures how similar each copy 

is to everybody else.  

Value 

Returns list with two components: innerCor and outerCor both of size [nSamples x 

nCopies]. 

See Also 

• Part of msc.preprocess.run and msc.project.run pipelines.  

• Used by msc.copies.merge function.  

• Uses cor function  

Examples 

   # load input data  

  if (!file.exists("Data_IMAC.Rdata")) example("msc.project.read") 

  load("Data_IMAC.Rdata") 

   

  # run in 3D input data using long syntax 

  out = msc.mass.adjust.calc (X); 

  Y   = msc.mass.adjust.apply(X, out$ShiftX, out$ScaleY, out$ShiftY) 

   

  # check what happen to sample correlation 

  A = msc.sample.correlation(X, PeaksOnly=TRUE) 



  B = msc.sample.correlation(Y, PeaksOnly=TRUE) 

  cat("Mean corelation between two copies of the same sample:\n") 

  cat(" before: ", mean(A$innerCor)," after: ", mean(B$innerCor), "\n") 

  cat("Mean corelation between unrelated samples:\n") 

  cat(" before: ", mean(A$outerCor)," after: ", mean(B$outerCor), "\n") 

  

 

3 Generic Tool Functions 
The functions in this section are generic tools that were written in order to support the 

rest of the library. 

3.1 LogitBoost - LogitBoost Classification Algorithm 

Description  

Train logitboost classification algorithm using decision stumps (one node decision trees) 

as weak learners.  

Usage 

LogitBoost(xlearn, ylearn, nIter=ncol(xlearn)) 

Arguments 

xlearn A matrix or data frame with training data. Rows contain samples and columns 

contain features 

ylearn Class labels for the training data samples. A response vector with one label for 

each row/component of xlearn. Can be either a factor, string or a numeric 

vector. 

nIter An integer, describing the number of iterations for which boosting should be run, 

or number of decision stumps that will be used. 

Details 

The function was adapted from logitboost.R function written by Marcel Dettling. See 

references and "See Also" section. The code was modified in order to make it much faster 

for very large data sets. The speed-up was achieved by implementing a internal version of 

decision stump classifier instead of using calls to rpart. That way, some of the most time 

consuming operations were precomputed once, instead of performing them at each 

iteration. Another difference is that training and testing phases of the classification 

process were split into separate functions.  

Value 



An object of class "LogitBoost" including components:  

Stump List of decision stumps (one node decision trees) used:  

• column 1: feature numbers or each stump, or which column each stump 

operates on  

• column 2: threshold to be used for that column  

• column 3: bigger/smaller info: 1 means that if values in the column are 

above threshold than corresponding samples will be labeled as 

lablist[1]. Value "-1" means the opposite.  

If there are more than two classes, than several "Stumps" will be cbind'ed  

lablist names of each class 

References 

See "Boosting for Tumor Classification of Gene Expression Data", Dettling and 

Buhlmann (2002), available on the web page http://stat.ethz.ch/~dettling/boosting.html.  

http://www.cs.princeton.edu/~schapire/boost.html  

See Also 

• predict.LogitBoost has prediction half of LogitBoost code  

• logitboost function from boost library  

• logitboost function from logitboost library (not in CRAN or BioConductor but 

can be found at http://stat.ethz.ch/~dettling/boosting.html) is very similar but 

much slower on very large datasets. It also perform optional cross-validation.  

Examples 

  data(iris) 

  Data  = iris[,-5] 

  Label = iris[, 5] 

   

  # basic interface 

  model = LogitBoost(Data, Label, nIter=20) 

  Lab   = predict(model, Data) 

  Prob  = predict(model, Data, type="raw") 

  t     = cbind(Lab, Prob) 

  t[1:10, ] 

 

  # two alternative call syntax 

  p=predict(model,Data) 

  q=predict.LogitBoost(model,Data) 

  pp=p[!is.na(p)]; qq=q[!is.na(q)] 

  stopifnot(pp == qq) 

 



  # accuracy increases with nIter (at least for train set) 

  table(predict(model, Data, nIter= 2), Label) 

  table(predict(model, Data, nIter=10), Label) 

  table(predict(model, Data),           Label) 

   

  # example of spliting the data into train and test set 

  mask = msc.sample.split(Label) 

  model = LogitBoost(Data[mask,], Label[mask], nIter=10) 

  table(predict(model, Data[!mask,], nIter=2), Label[!mask]) 

  table(predict(model, Data[!mask,]),          Label[!mask]) 

3.2 predict.LogitBoost - Prediction Based on LogitBoost 
Classification Algorithm 

Description 

Prediction or Testing using logitboost classification algorithm  

Usage 

predict.LogitBoost(object, xtest, type = c("class", "raw"), nIter=NA, 

...) 

Arguments 

object An object of class "LogitBoost" see "Value" section of LogitBoost for details 

xtest A matrix or data frame with test data. Rows contain samples and columns contain 

features 

type See "Value" section 

nIter An optional integer, used to lower number of iterations (decision stumps) used in 

the decision making. If not provided than the number will be the same as the one 

provided in LogitBoost. If provided than the results will be the same as running 

LogitBoost with fewer iterations.  

... not used but needed for compatibility with generic predict method 

Details 

Logitboost algorithm relies on a voting scheme to make classifications. Many (nIter of 

them) week classifiers are applied to each sample and their findings are used as votes to 

make the final classification. The class with the most votes "wins". However, with this 

scheme it is common for two cases have a tie (the same number of votes), especially if 

number of iterations is even. In that case NA is returned, instead of a label.  

Value 



If type = "class" (default) label of the class with maximal probability is returned for each 

sample. If type = "raw", the a-posterior probabilities for each class are returned. 

See Also 

LogitBoost has training half of LogitBoost code  

Examples 

# See LogitBoost example 

3.3 Moving Window Analysis of a Vector 

Description 

A collection of functions to perform fast moving window (running, rolling window) 

analysis of vectors.  

Usage 

  runmean(x, k, endrule=c("NA", "trim", "keep", "constant", "func")) 

  runmin (x, k, endrule=c("NA", "trim", "keep", "constant", "func")) 

  runmax (x, k, endrule=c("NA", "trim", "keep", "constant", "func")) 

  runmad (x, k, center=runmed(x,k,endrule="keep"), constant=1.4826,   

          endrule=c("NA", "trim", "keep", "constant", "func")) 

  runquantile(x, k, probs, type=7,  

          endrule=c("NA", "trim", "keep", "constant", "func")) 

  EndRule(x, y, k,  

          endrule=c("NA", "trim", "keep", "constant", "func"), Func, 

...) 

Arguments 

x numeric vector of length n 

k width of moving window; must be an odd integer bigger than one.  

endrule character string indicating how the values at the beginning and the end, of the 

data, should be treated. Only first and last k2 values at both ends are affected, 

where k2 is the half-bandwidth k2 = k %/% 2.  

• "trim" - trim the ends output array length is equal to length(x)-2*k2 

(out = out[(k2+1):(n-k2)]). This option mimics output of apply 

(embed(x,k),1,FUN) and other related functions.  

• "keep" - fill the ends with numbers from x vector (out[1:k2] = 
x[1:k2])  

• "constant" - fill the ends with first and last calculated value in output 

array (out[1:k2] = out[k2+1])  



• "NA" - fill the ends with NA's (out[1:k2] = NA)  

• "func" - applies the underlying function to smaller and smaller 

sections of the array. For example in case of mean: for(i in 1:k2) 

out[i]=mean(x[1:i]). This option is not optimized and could be very 

slow for large windows.  

Similar to endrule in runmed function which has the following options: 

“c("median", "keep", "constant")” .  

center moving window center used by runmad function defaults to running median 

(runmed function). Similar to center in mad function.  

constant scale factor used by runmad, such that for gaussian distribution X, mad(X) is 

the same as sd(X). Same as constant in mad function. 

probs numeric vector of probabilities with values in [0,1] range used by 

runquantile. For example Probs=c(0,0.5,1) would be equivalent to 

running runmin, runmed and runmax. Same as probs in quantile function.  

type an integer between 1 and 9 selecting one of the nine quantile algorithms, same 

as type in quantile function. Another even more readable description of nine 

ways to calculate quantiles can be found at 

http://mathworld.wolfram.com/Quantile.html.  

y numeric vector of length n, which is partially filled output of one of the run 

functions. Function EndRule will fill the remaining begining and end sections 

using method chosen by endrule argument. 

Func Function name that EndRule will use in case of endrule="func". 

... Additionam parameters that EndRule will use in case of endrule="func". 

Details 

Apart from the end values, the result of y = runFUN(x, k) is the same as 

“for(j=(1+k2):(n-k2)) y[j]=FUN(x[(j-k2):(j+k2)])”, where FUN stands for min, 

max, mean, mad or quantile functions.  

The main incentive to write this set of functions was relative slowness of majority of 

moving window functions available in R and its packages. With exception of runmed, a 

running window median function, all functions listed in "see also" section are slower than 

very inefficient “apply(embed(x,k),1,FUN)” approach. Speeds of above functions are 

as follow:  

• runmin, runmax, runmean run at O(n)  

• runquantile and runmad run at O(n*k)  

• runmed - related R function run at O(n*log(k))  

Functions runquantile and runmad are using insertion sort to sort the moving window, 

but gain speed by remembering results of the previous sort. Since each time the window 



is moved, only one point changes, all but one points in the window are already sorted. 

Insertion sort can fix that in O(k) time.  

Function runquantile when run in single probability mode automatically recognizes 

probabilities: 0, 1/2, and 1 as special cases and return output from functions: runmin, 

runmed and runmax respectivly.  

All run* functions are written in C, but runmin, runmax and runmean also have R code 

versions that can be used if DLL is not loaded.  

Function EndRule applies one of the five methods (see endrule argument) to process 

end-points of the input array x.  

Value 

Functions runmin, runmax, runmean and runmad return a numeric vector of the same 

length as x. Function runquantile returns a matrix of size [n x length(probs)]. 

References 

Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages, American 

Statistician, 50, 361.  

See Also 

Links related to each function:  

• runmin - min, rollMin from fSeries library  

• runmax - max, rollMax from fSeries library  

• runmean - mean, kernapply, filter, rollMean from fSeries library, subsums 

from magic library  

• runquantile - quantile, runmed, smooth  

• runmad - mad, rollVar from fSeries library  

• generic running window functions: apply (embed(x,k), 1, FUN) (fastest), 

rollFun from fSeries (slow), running from gtools package (extrimly slow for 

this purpose), subsums from magic library can perform running window 

operations on data with any dimensions.  

• EndRule - smoothEnds(y,k) function is similar to 
EndRule(x,y,k,endrule="func", median)  

Examples 

  # test runmin, runmax and runmed 

  k=15; n=200; 

  x = rnorm(n,sd=30) + abs(seq(n)-n/4) 

  col = c("black", "red", "green", "blue", "magenta", "cyan") 



  plot(x, col=col[1], main = "Moving Window Analysis Functions") 

  lines(runmin(x,k), col=col[2]) 

  lines(runmed(x,k), col=col[3]) 

  lines(runmax(x,k), col=col[4]) 

  legend(0,.9*n, c("data", "runmin", "runmed", "runmax"), col=col, 

lty=1 ) 

 

  #test runmean and runquantile 

  y=runquantile(x, k, probs=c(0, 0.5, 1, 0.25, 0.75), 

endrule="constant") 

  plot(x, col=col[1], main = "Moving Window Quantile") 

  lines(runmean(y[,1],k), col=col[2]) 

  lines(y[,2], col=col[3]) 

  lines(runmean(y[,3],k), col=col[4]) 

  lines(y[,4], col=col[5]) 

  lines(y[,5], col=col[6]) 

  lab = c("data", "runmean(runquantile(0))", "runquantile(0.5)",  

  "runmean(runquantile(1))", "runquantile(.25)", "runquantile(.75)") 

  legend(0,0.9*n, lab, col=col, lty=1 ) 

 

  #test runmean and runquantile 

  k =25 

  m=runmed(x, k) 

  y=runmad(x, k, center=m) 

  plot(x, col=col[1], main = "Moving Window Analysis Functions") 

  lines(m    , col=col[2]) 

  lines(m-y/2, col=col[3]) 

  lines(m+y/2, col=col[4]) 

  lab = c("data", "runmed", "runmed-runmad/2", "runmed+runmad/2") 

  legend(0,1.8*n, lab, col=col, lty=1 ) 

 

  # speed comparison 

  x=runif(100000); k=991; 

  system.time(runmean(x,k)) 

  system.time(filter(x, rep(1/k,k), sides=2)) #the fastest alternative 

  k=91; 

  system.time(runmad(x,k)) 

  system.time(apply(embed(x,k), 1, mad)) #the fastest alternative 

3.4 base64encode & base64decode - Convert R vectors 
to/from the Base64 format 

Description 

Convert R vectors of any type to and from the Base64 format for encrypting any binary 

data as string using alphanumeric subset of ASCII character set.  

Usage 

  z = base64encode(x, ...) 

  x = base64decode(z, what, ...) 

Arguments 



x vector or any structure that can be converted to a vector by as.vector function. 

Strings are also allowed. 

z String with Base64 code, using [A-Z,a-z,0-9,+,/,=] subset of characters 

what Either an object whose mode will give the mode of the vector to be created, or a 

character vector of length one describing the mode: one of '"numeric", "double", 

"integer", "int", "logical", "complex", "character", "raw". Same as variable what in 

readBin and base64decode functions.  

... parameters to be passed to bin2raw and raw2bin functions. 

Details 

The Base64 encoding is designed to encode arbitrary binary information for transmission 

by electronic mail. It is defined by MIME (Multipurpose Internet Mail Extensions) 

specification RFC 1341, RFC 1421, RFC 2045 and others. Triplets of 8-bit octets are 

encoded as groups of four characters, each representing 6 bits of the source 24 bits. Only 

a 65-character subset ([A-Z,a-z,0-9,+,/,=]) present in all variants of ASCII and EBCDIC 

is used, enabling 6 bits to be represented per printable character  

Value 

Function base64encode returns a string with Base64 code. Function base64decode 

returns vector of appropriate mode and length (see x above). 

References 

• Base64 description in "Connected: An Internet Encyclopedia" 

http://www.freesoft.org/CIE/RFC/1521/7.htm  

• MIME RFC 1341 http://www.faqs.org/rfcs/rfc1341.html  

• MIME RFC 1421 http://www.faqs.org/rfcs/rfc1421.html  

• MIME RFC 2045 http://www.faqs.org/rfcs/rfc2045.html  

• Portions of the code are based on Matlab code by Peter Acklam 

http://home.online.no/~pjacklam/matlab/software/util/datautil/  

See Also 

• bin2raw and raw2bin are being used to convert R vectors to and from the raw 

binary format.  

• xmlValue from XML package often reads XML code which sometimes is 

encoded in Base64 format.  

Examples 

   x = (10*runif(10)>5) # logical 

   for (i in c(NA, 1, 2, 4)) { 

     y = base64encode(x, size=i) 



     z = base64decode(y,typeof(x), size=i) 

     stopifnot(x==z) 

   } 

   print("Checked base64 for encode/decode logical type") 

 

   x = as.integer(1:10) # integer 

   for (i in c(NA, 1, 2, 4)) { 

     y = base64encode(x, size=i) 

     z = base64decode(y,typeof(x), size=i) 

     stopifnot(x==z) 

   } 

   print("Checked base64 encode/decode for integer type") 

    

   x = (1:10)*pi        # double 

   for (i in c(NA, 4, 8)) { 

     y = base64encode(x, size=i) 

     z = base64decode(y,typeof(x), size=i) 

     stopifnot(mean(abs(x-z))<1e-5) 

   } 

   print("Checked base64 for encode/decode double type") 

    

   x = log(as.complex(-(1:10)*pi))        # complex 

   y = base64encode(x) 

   z = base64decode(y,typeof(x)) 

   stopifnot(x==z) 

   print("Checked base64 for encode/decode complex type") 

   

   x = "Chance favors the prepared mind" # character 

   y = base64encode(x) 

   z = base64decode(y,typeof(x)) 

   stopifnot(x==z) 

   print("Checked base64 for encode/decode character type") 

3.5 bin2raw & raw2bin - Convert R vectors to/from the 
raw binary format 

Description 

Convert R vectors of any type to and from the raw binary format, stored as vector of type 

"raw".  

Usage 

  r = bin2raw(x, size=NA) 

  x = raw2bin(r, what, size=NA, signed = TRUE) 

Arguments 

x vector or any structure that can be converted to a vector by as.vector function. 

Strings are also allowed. 

r vector of type "raw" 



what Either an object whose mode will give the mode of the vector to be created, or a 

character vector of length one describing the mode: one of '"numeric", "double", 

"integer", "int", "logical", "complex", "character", "raw". Same as variable what 

in readBin and base64decode functions.  

size integer. The number of bytes per element in the byte stream stored in r. The 

default, 'NA', uses the natural size. See details.  

signed logical. Only used for integers of sizes 1 and 2, when it determines if the quantity 

stored as raw should be regarded as a signed or unsigned integer. 

Details 

Quoting from readBin documentation:  

"If 'size' is specified and not the natural size of the object, each element of the vector is 

coerced to an appropriate type before being written or as it is read. Possible sizes are 1, 2, 

4 and possibly 8 for integer or logical vectors, and 4, 8 and possibly 12/16 for numeric 

vectors. (Note that coercion occurs as signed types except if 'signed = FALSE' when 

reading integers of sizes 1 and 2.) Changing sizes is unlikely to preserve 'NA's, and the 

extended precision sizes are unlikely to be portable across platforms."  

Value 

Function bin2raw returns vector of raw values (see r above), where each 1-byte raw 

value correspond to 1-byte of 1-byte of the binary form of other types. Length of the 

vector is going to be "number of bytes of a single element in array x" times length(x).  

Function raw2bin returns vector of appropriate mode and length (see x above), where 

each 1-byte raw value correspond to 1-byte of the binary form of other types. Length of 

the vector is going to be number of bytes per element in array x times length(x). If 

parameter what is equal to "character" than a string (of length 1) is returned instead of 

vector f characters. 

Note 

At the moment those two functions use calls to writeBin and readBin functions to do 

the job. I hope to change it in the future by writing a C code.  

See Also 

readBin, writeBin  

Examples 

   x = (10*runif(10)>5) # logical 

   for (i in c(NA, 1, 2, 4)) { 

     y = bin2raw(x, size=i) 



     z = raw2bin(y,typeof(x), size=i) 

     stopifnot(x==z) 

   } 

   print("Checked bin2raw and raw2bin conversion for logical type") 

    

   x = as.integer(1:10) # integer 

   for (i in c(NA, 1, 2, 4)) { 

     y = bin2raw(x, size=i) 

     z = raw2bin(y,typeof(x), size=i) 

     stopifnot(x==z) 

   } 

   print("Checked bin2raw and raw2bin conversion for integer type") 

   

   x = (1:10)*pi        # double 

   for (i in c(NA, 4, 8)) { 

     y = bin2raw(x, size=i) 

     z = raw2bin(y,typeof(x), size=i) 

     stopifnot(mean(abs(x-z))<1e-5) 

   } 

   print("Checked bin2raw and raw2bin conversion for double type") 

    

   x = log(as.complex(-(1:10)*pi))        # complex 

   y = bin2raw(x) 

   z = raw2bin(y,typeof(x)) 

   stopifnot(x==z) 

   print("Checked bin2raw and raw2bin conversion for complex type") 

    

   x = "Chance favors the prepared mind" # character 

   y = bin2raw(x) 

   z = raw2bin(y,typeof(x)) 

   stopifnot(x==z) 

   print("Checked bin2raw and raw2bin conversion for character type") 

3.6 colAUC - Columnwise Area Under ROC Curve (AUC) 

Description 

Area Under ROC Curve (AUC) calculated for every column of the matrix.  

Usage 

  auc = colAUC(X, y) 

  p   = colAUC(X, y, p.val=TRUE) 

Arguments 

X A matrix or data frame. Rows contain samples and columns contain 

features/variables. 

y Class labels for the X data samples. A response vector with one label for each 

row/component of X. Can be either a factor, string or a numeric vector. 

p.val a boolean flag: if set to TRUE than "Wilcoxon rank sum test" p-values (see 



wilcox.test) will be returned instead of AUC values 

Details 

AUC is a very useful measure of similarity between two classes measuring area under 

"Receiver Operating Characteristic" or ROC curve. In case of data with no ties all 

sections of ROC curve are either horizontal or vertical, in case of data with ties diagonal 

sections can also occur. Area under the ROC curve is calculated using trapz function. 

AUC is always in between 0.5 (two classes are statistically identical) and 1.0 (there is a 

threshold value that can achieve a perfect separation between the classes).  

This measure is very similar to Wilcoxon rank sum test (see wilcox.test), which is also 

called Mann-Whitney test. Wilcoxon-test's p-value can be calculated by p=pnorm( 

n1*n2*(1-auc), mean=n1*n2/2, sd=sqrt(n1*n2*(n1+n2+1)/12) ) where n1 and n2 

are numbers of elements in two classes being compared.  

The main purpose of this function was to calculate AUC's of large number of features, 

fast. It is being used to help with classification of protein mass spectra data that often 

have up to 50K features, as a fast and dirty way of lowering dimensionality of the data 

before applying standard classification algorithms like nnet or svd.  

Value 

An output is a single matrix with the same number of columns as X and "n choose 2" ( 

n!/((n-2)! 2!) ) number of rows, where n is number of unique labels in y list. For example, 

if y contains only two unique class labels ( length(unique(lab))==2 ) than output 

matrix will have a single row containing AUC of each column. If more than two unique 

labels are present than AUC is calculated for every possible pairing of classes ("n choose 

2" of them). 

References 

• Mason, S.J. and N.E. Graham. (2002) "Areas beneath the relative operating 

characteristics (ROC) and relative operating levels (ROL) curves: Statistical 

significance and interpretation, " Q. J. R. Meteorol. Soc. textbf{30} (1982) 291-

303.  

• See http://www.medicine.mcgill.ca/epidemiology/hanley/software/ to find four 

articles below:  

o Hanley and McNeil "The Meaning and Use of the Area under a Receiver 

Operating Characteristic (ROC) Curve." Radiology 1982: 143: 29-36.  

o Hanley and McNeil "A Method of Comparing the Areas under ROC 

curves derived from same cases." Radiology 1983: 148: 839-843.  

o McNeil and Hanley "Statistical Approaches to the Analysis of ROC 

curves." Medical Decision Making 1984: 4(2): 136-149.  



o McNeil and Hanley "Statistical Approaches to the Analysis of ROC 

curves." Medical Decision Making 1984: 4(2): 136-149.  

See Also 

AUC from ROC package, roc.area from verification package, wilcox.test  

Examples 

  # load MASS library with "cats" data set that have following columns: 

sex,  

  # body weight, hart weight 

  library(MASS) 

  data(cats) 

  colAUC(cats[,2:3], cats[,1])  

   

  # compare with examples from roc.area function: using Data from Mason 

and Graham (2002). 

  a<- (1981:1995) 

  b<- c(0,0,0,1,1,1,0,1,1,0,0,0,0,1,1) 

  c<- c(.8, .8, 0, 1,1,.6, .4, .8, 0, 0, .2, 0, 0, 1,1) 

  d<- c(.928,.576, .008, .944, .832, .816, .136, .584, .032, .016, .28, 

.024, 0, .984, .952) 

  A<- data.frame(a,b,c,d) 

  names(A)<- c("year", "event", "p1", "p2") 

  if (library(verification, logical.return=TRUE)) { 

    roc.area(A$event, A$p1)           # for model with ties 

    roc.area(A$event, A$p2)           # for model without ties 

  } 

  wilcox.test(p2~event, data=A) 

  # colAUC output is the same as roc.area's A.tilda values 

  colAUC(A[,3:4], A$event)  

  # colAUC output is the same as roc.area's  and wilcox.test's p values 

  colAUC(A[,3:4], A$event, p.val=TRUE)  

   

  # example of 3-class data 

  data(iris) 

  colAUC(iris[,-5], iris[,5]) 

ENVI {caMassClass} R Documentation 

3.7 read.ENVI & write.ENVI - Read and write binary data 
in ENVI format 

Description 

Read and write binary data in ENVI format, which is supported by most GIS software.  

Usage 

   read.ENVI(filename, headerfile=paste(filename, ".hdr", sep=""))  

  write.ENVI(X, filename, interleave = c("bsq", "bil", "bip"))  



Arguments 

X data to be saved in ENVI file. Can be a matrix or 3D array. 

filename character string with name of the file (connection) 

headerfile optional character string with name of the header file 

interleave optional character string specifying interleave to be used 

Details 

ENVI binary files use a generalized raster data format that consists of two parts:  

• binary file - flat binary file equivalent to memory dump, as produced by 

writeBin in R or fwrite in C/C++.  

• header file - small text (ASCII) file containing the metadata associated with the 

binary file. This file can contain the following fields, followed by equal sign and a 

variable:  

o samples - number of columns  

o lines - number of rows  

o bands - number of bands (channels, planes)  

o data type - following types are supported:  

� 1 - 1-byte unsigned integer  

� 2 - 2-byte signed integer  

� 3 - 4-byte signed integer  

� 4 - 4-byte float  

� 5 - 8-byte double  

� 9 - 2x8-byte complex number made up from 2 doubles  

� 12 - 2-byte unsigned integer  

o header offset - number of bytes to skip before raster data starts in 

binary file.  

o interleave - Permutations of dimensions in binary data:  

� BSQ - Band Sequential (X[col,row,band])  

� BIL - Band Interleave by Line (X[col,band,row])  

� BIP - Band Interleave by Pixel (X[band,col,row])  

o byte order - the endian-ness of the saved data:  

� 0 - means little-endian byte order, format used on PC/Intel 

machines  

� 1 - means big-endian (aka IEEE, aka "network") byte order, format 

used on UNIX and Macintosh machines  

Fields samples, lines, bands, data type are required, while header offset, 

interleave, byte order are optional. All of them are in form of integers except 

interleave which is a string.  

This generic format allows reading of many raw file formats, including those with 

embedded header information. Also it is a handy binary format to exchange data between 



PC and UNIX/Mac machines, as well as different languages like: C, Fortran, Matlab, etc. 

Especially since header files are simple enough to edit by hand.  

File type supported by most of GIS (geographic information system) software including: 

ENVI software, Freelook (free file viewer by ENVI), ArcGIS, etc.  

Value 

Function read.ENVI returns either a matrix or 3D array. Function write.ENVI does not 

return anything. 

See Also 

readBin, writeBin  

Examples 

  X = array(1:60, 3:5) 

  write.ENVI(X, "temp.nvi") 

  Y = read.ENVI("temp.nvi") 

  stopifnot(X == Y) 

  readLines("temp.nvi.hdr") 

   

  d = c(20,30,40) 

  X = array(runif(prod(d)), d) 

  write.ENVI(X, "temp.nvi", interleave="bil") 

  Y = read.ENVI("temp.nvi") 

  stopifnot(X == Y) 

  readLines("temp.nvi.hdr") 

   

  file.remove("temp.nvi") 

  file.remove("temp.nvi.hdr") 

3.8 trapz - Trapezoid Rule Numerical Integration 

Description 

Computes the integral of Y with respect to X using trapezoid rule integration.  

Usage 

trapz(x, y) 

Arguments 

x Sorted vector of x-axis values. 

y Vector of y-axis values.  



Details 

The function has only two lines:  

    idx = 2:length(x) 

    return (as.double( (x[idx] - x[idx-1]) %*% (y[idx] + y[idx-1])) / 

2) 

Value 

Integral of Y with respect to X or area under the Y curve. 

Note 

Trapezoid rule is not the most accurate way of calculating integrals (it is exact for linear 

functions), for example Simpson's rule (exact for linear and quadratic functions) is more 

accurate.  

References 

D. Kincaid & W. Chaney, "Numerical Analysis", 1991, p.445  

See Also 

• intg from PROcess package  

• trapezint from ROC package  
• integrate  

• Matlab's trapz function ( 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/trapz.html)  

Examples 

  # integral of sine function in [0, pi] range suppose to be exactly 2. 

  # lets calculate it using 10 samples: 

  x = (1:10)*pi/10 

  trapz(x, sin(x)) 

  # now lets calculate it using 1000 samples: 

  x = (1:1000)*pi/1000 

  trapz(x, sin(x)) 

3.9 combs - All Combinations of k Elements from Vector 
v 

Description 

Finds all unordered combinations of k elements from vector v.  



Usage 

combs(v,k) 

Arguments 

v Any numeric vector 

k Number of elements to choose from vector v. Integer smaller or equal than length of v. 

Value 

combs(v,k) (where v has length n) creates a matrix with n!/((n-k)! k!) (n choose k) rows 

and k columns containing all possible combinations of n elements taken k at a time. 

See Also 

I discovered recently that R packages already have two functions with similar 

capabilities: combinations from gTools package and nchoosek from vsn package. Also 

similar to Matlab's nchoosek function ( 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/nchoosek.html)  

Examples 

  #example: combs(1:3,2) returns matrix with following rows (1 2), (1 

3), (2 3) 

  combs(1:3,2) 

 



4 References 
 [1] Cyphergen’s ProteinChip Software 3.0 User Manual. 

 

[2] PROcess R library by Xiaochun Li 
http://bioconductor.org/repository/devel/package/Source/PROcess_0.9.tar.gz 

 

[3] University of Texas - M.D. Anderson Cancer Center – Cromwell Matlab package 
http://bioinformatics.mdanderson.org/cromwell.html 
 

[4] Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills 

GB, Simone C, Fishman DA, Kohn EC, Liotta LA: Use of proteomic patterns in serum to 

identify ovarian cancer. Lancet 2002, 359:572-577. 

 

[5] Clinical Proteomics Program Databank website at www.ncifdaproteomics.com 

(unfortunately this website changes often). 

 

[6] Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein 

patterns in serum: comparing data sets from different experiments. Bioinformatics. 2004 

Jan 29. 

 

[7] Sorace JM, and Zhan, M. A data review and re-assessment of ovarian cancer serum 

proteomic profiling BMC Bioinformatics 2003, 4:24. 

 

[8] Bao-Ling Adam, Yinsheng Qu, John W. Davis, Michael D. Ward, Mary Ann 

Clements, Lisa H. Cazares, O. John Semmes, Paul F. Schellhammer, Yutaka Yasui, 

Ziding Feng, and George L. Wright, Jr.. Serum Protein Fingerprinting Coupled with a Pattern-

matching Algorithm Distinguishes Prostate Cancer from Benign Prostate Hyperplasia and Healthy Men  
Cancer Res 2002 62: 3609-3614. 

 

[9] Bañez LL, Prasanna P, Sun L, Ali A, Zou Z, Adam B-L, McLeod DG, Moul JW and 

Srivastava S: Diagnostic Potential of Serum Proteomic Patterns in Prostate Cancer. J. 

Urol. (in press), 2003. 

  

[10] Virginia Medical School – Virginia Prostate Center -  Overview of the SELDI 

System; http://www.evms.edu/vpc/seldi/seldiprocess/index.html . 

 

[11] Virginia Medical School – Virginia Prostate Center -  Overview of the PeakMiner 

Software http://www.evms.edu/vpc/seldi/peakminer.pdf . 

 

[12] M. Dettling & P. Bühlmann; Boosting for Tumor Classification with Gene 

Expression Data; Bioinformatics, June 12, 2003  

 

[13] Yinsheng Qu, Bao-Ling Adam, Yutaka Yasui, Michael D. Ward, Lisa H. Cazares, 

Paul F. Schellhammer, Ziding Feng, O. John Semmes, and George L. Wright, Jr.;Boosted 

Decision Tree Analysis of Surface-enhanced Laser Desorption/Ionization Mass Spectral 



Serum Profiles Discriminates Prostate Cancer from Noncancer Patients; Clin Chem 2002 

48: 1835-1843. 

 

[14] Wagner M, Naik DN, Pothen A, Kasukurti S, Devineni RR, Adam BL, Semmes OJ., 

Wright GL; Computational protein biomarker prediction: a case study for prostate cancer 

BMC Bioinformatics 2004, 5:26 (11 March 2004) 

 

[15] SOM (self organizing maps) Toolbox, Matlab - 

http://www.cis.hut.fi/projects/somtoolbox/  

 

[16] PRTools; pattern recognition and classification toolbox, Matlab - 

http://www.ph.tn.tudelft.nl/~bob/PRTOOLS.html , http://prtools.org/prtools.html  

 

[17] rpart; Recursive partitioning and regression tree package; R - http://cran.r-

project.org/src/contrib/Descriptions/rpart.html  

 

[18] nnet, neural networks; R - 

http://www.math.mcgill.ca/sysdocs/R/library/nnet/html/nnet.html  

 

[19] svm, support vector machines, R - 

http://www.maths.lth.se/help/R/.R/library/e1071/html/svm.html  

 

[20] MATLAB Support Vector Machine Toolboxes - 

http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/ , http://asi.insa-

rouen.fr/~arakotom/toolbox/index , http://www.ece.osu.edu/~maj/osu_svm/ 

 

[21] Liotta LA, Petricoin E. SELDI-TOF-based serum proteomics pattern diagnostics for 

early detection of cancer. Current Opinion in Biotechnology 2004, 15:24-30 

 

[22] Downey, Tom; With Microarrays, Pitfalls of false discovery; Genome Technology; 

01/2003 

 

[23] David G. Stork and Elad Yom-Tov; Computer Manual in MATLAB to accompany 

Pattern Classification; Wiley Interscience; ISBN: 0-471-42977-5 

 

 


