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Abstract

This software fits a multivariate proportional hazards model to interval
censored event data by a Bayesian approach. Right and interval censored
data and a lognormal frailty term can be fitted. An example is studied
and the output analysed.

1 The basic model

The data, based on a sample of size n, consists of the triple (ti, δi,xi), i = 1, . . . , n
where ti is the time on study for subject i, δi is the event indicator for subject
i (δi = 1 if event has occurred, δi = 0 if the observation is right censored), xi is
the r-dimensional vector of covariate values for subject i.
The likelihood contribution of the i-th single observation is given by

λ0(ti|xi)δiS(ti|xi) = exp
{

δi[h(ti) + β′x]− eβ′x

∫ ti

0

exp[h(s)]ds

}
where h(s) = ln[λ0(s)]. The infinite dimensional problem gets to a finite di-
mensional one by partitioning the time axis [0,∞[ into disjoint intervals Ik =
[θk−1, θk[ for k = 1, ...,K + 1 where θk is the time of the k-th event and θ0 = 0.
The largest event time observed is θK and IK+1 is taken as the interval [θK ,∞[.
The function h is constant on the intervals Ik and is set to −∞ on [θK ,∞[. The
integral in the likelihood contribution of the i-th observation can be written as
a sum.
The priors for the components of the vector β will be independently normal
distributed with mean 0 and a small precision τ = 0.001. The prior for step
function h will be a autoregressive process of order one with prior information
on smoothness. Writing hk = h(θk), k = 1, . . . ,K the first order process is de-
fined as hk = hk−1 + εk with εk ∼ N(0, σ2

k) and h0 ∼ N(0, σ2
0), where h0 and εk,

k = 1, . . . ,K are pairwise independent. The variances are chosen as σ2
k = ∆kσ2

1

and ∆k may be defined by θk − θk−1 for k > 1 with θ0 = 0. The inverse of
the covariance matrix, Σ−1, is a bandmatrix of bandwidth one. The parameters
1

σ2
0

= τ0 and 1
σ2
1

= τ1 are treated as hyperparameters with flat gamma priors
setting both parameters equal to 0.001.
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2 Sampling procedure

Sampling for the parameter vector

Aitkin and Clayton [1] pointed out that the proportional hazards model can
interpreted as a generalized linear model.
Gamerman [2] describes how one can effectively sample the vector of covariates
in generalizes linear mixed models in a block updating step. This is a combina-
tion of the iterated least squares method (IWLS) as it is known in fitting such
models with a Metropolis-Hasting sampling.

Sampling for the baseline hazard

With the given structure of the log baseline hazard function one has to sample
from a Gaussian Markov Random Field (GMRF), see Rue [5].

Sampling for the dispersion parameters

For the dispersion parameters σ2
0 and σ2

1 a flat Gamma prior with rate κ and
shape ν is chosen. This leads to Gamma posteriors.

3 Extensions of the basic model

Data augmentation and a multiplicative frailty model is used to analyze clus-
tered interval censored event data. Data augmentation is used to interfere un-
observed event times. The potential clustering of event times within a statistical
unit is modeled by introducing an unit specific random effect or frailty term into
the proportional hazards model.

4 Example

Meisel et al. [4] present data on the shrinkage of aneurisms associated with cere-
bral arteriovenous malformations (cAVM) after embolization treatment. The
time to a shrinkage of the aneurism to below 50% of the baseline volume was of
interest. Several patients had multiple aneurisms. Each patient was inspected
at a random inspection time obs.t. The censoring variable z was set to one,
if at the inspection time sufficient shrinkage was observed, else the censoring
indicator was set to zero.
Two covariates were considered: the degree of cAMV occlusion by embolization
(dichotomized at 50%, variable mo) and the location of the aneurism, whether
at the midline arteries or at other afferent cerebral arteries, variable lok.
The single aneurisms are not independent because aneurisms within a patient
may shrink in the same way (because the share the same ”environment”). Mul-
tiple aneurisms were observed per patient. This clustering of aneurisms is indi-
cated by the grouping variable gr.
The data is loaded and inspected for the first five patients.

> library(survBayes)
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Loading required package: survival
Loading required package: splines
Loading required package: coda

Attaching package 'survBayes':

The following object(s) are masked _by_ .GlobalEnv :

survBayes survBayes.b.fctn.Lambda survBayes.base survBayes.chol survBayes.control survBayes.control.frailty survBayes.draw.cond.pw.lin.exp survBayes.KM.int survBayes.Lambda0 survBayes.numb.events.int survBayes.poisson.update survBayes.taylor

> data(AA.data)

> AA.data[1:11, ]

z mo gr lok t.left t.right
1 0 0 1 1 1.7698630 NA
2 0 1 2 1 0.9972603 NA
3 0 1 2 1 0.9972603 NA
4 0 1 2 1 0.9972603 NA
5 0 0 3 0 1.0712329 NA
6 0 0 3 1 1.0712329 NA
7 0 0 4 1 5.6547945 NA
8 0 0 5 1 1.5780822 NA
9 1 0 5 0 0.0000000 1.578082
10 1 0 5 0 0.0000000 1.578082
11 1 0 5 1 0.0000000 1.578082

The data is analyzed by applying the survBayes algorithm. The fit with
survBayes gives an object which stores all sampled values in the required num-
ber after the burn in. The str function gives a survey over the output. The low
number for the sample is only due to fast checking of the package in the CRAN.
Please choose at least 5000.

> AA.res <- survBayes(Surv(t.left, t.right, z * 3, type = "interval") ~

+ mo + lok + frailty(gr, dist = "gauss"), data = AA.data, burn.in = 0,

+ number.sample = 10)

10

> str(AA.res)

List of 7
$ t.where : num [1:49] 0.0000 0.0281 0.0611 0.1305 0.1580 ...
$ lbh : mcmc [1:10, 1:49] -1.40 -1.57 -1.57 -1.45 -1.32 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:10] "lbh" "lbh" "lbh" "lbh" ...
.. ..$ : NULL
..- attr(*, "mcpar")= num [1:3] 1 10 1
..- attr(*, "class")= chr "mcmc"
$ beta : mcmc [1:10, 1:2] -0.519 -0.695 -0.695 -0.695 -0.695 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
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.. ..$ : chr [1:2] "mo" "lok"

..- attr(*, "mcpar")= num [1:3] 1 10 1

..- attr(*, "class")= chr "mcmc"
$ sigma.lbh : mcmc [1:10, 1:2] 1917.15 2.60 1796.31 15.07 2.74 ...
..- attr(*, "mcpar")= num [1:3] 1 10 1
..- attr(*, "class")= chr "mcmc"
$ alpha.cluster : mcmc [1:10, 1:83] -0.724 -0.724 -0.724 -0.724 -0.724 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:10] "alpha.cluster" "alpha.cluster" "alpha.cluster" "alpha.cluster" ...
.. ..$ : NULL
..- attr(*, "mcpar")= num [1:3] 1 10 1
..- attr(*, "class")= chr "mcmc"
$ sigma.cluster :Class 'mcmc' atomic [1:10] 0.0194 0.0310 0.0288 0.0280 0.0181 ...
.. ..- attr(*, "mcpar")= num [1:3] 1 10 1
$ m.h.performance: num [1:3] 4 8 0

The components are

t.where: the time points which were chosen; the range of the Kaplan Meier
estimate is divided by the number of grid points and transformed back to
the time axis;

lbh: samples of the log baseline hazard at the grid points;

beta: samples of the vector of covariates;

sigma.lbh: samples of sigma.lbh.0 and sigma.lbh.1;

alpha.cluster: samples of the frailty values;

sigma.cluster: samples of frailty variance;

m.h.performance: number of the successful performances of the Metropolis-
Hastings step for beta, lbh and, if appropriate, alpha

The convergence is diagnosed by mean of CODA. The Raftery-Lewis diagnostic
gives a good description of the convergence, see [3].

> raftery.diag(AA.res$beta)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

> raftery.diag(AA.res$sigma.lbh)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s
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> raftery.diag(AA.res$sigma.cluster)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

> raftery.diag(AA.res$alpha.cluster)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

This indicates that the sample size should be increased to at least 30000 sam-
ples.
The estimated coefficients and cumulative baseline hazard can be used to esti-
mated and plot group specific survival curves.

> beta.est <- apply(AA.res$beta, 2, mean)

> lambda0 <- exp(apply(AA.res$lbh, 2, mean))

> Lambda0 <- c(0, cumsum(diff(AA.res$t.where) * lambda0[-length(lambda0)]))

> surv.base <- exp(-Lambda0)

> plot(AA.res$t.where, surv.base, type = "s", xlab = "time [years]",

+ ylab = "Survival function", lty = 1)

> lines(AA.res$t.where, surv.base^exp(beta.est["mo"]), type = "s",

+ lty = 2)

> lines(AA.res$t.where, surv.base^exp(beta.est["lok"]), type = "s",

+ lty = 3)

> lines(AA.res$t.where, surv.base^exp(sum(beta.est[c("mo", "lok")])),

+ type = "s", lty = 5)

> leg.names <- c("mo=0, lok=0", "mo=1, lok=0", "mo=0, lok=1", "mo=1, lok=1")

> legend(4, 1, leg.names, lty = c(1, 2, 3, 5), bty = "n")
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