
zoo: An S3 Class and Methods for Indexed

Totally Ordered Observations

Achim Zeileis
Wirtschaftsuniversität Wien

Gabor Grothendieck

Abstract

zoo is an R package providing an S3 class with methods for indexed totally ordered ob-
servations, such as irregular time series. Its key design goals are independence of a particular
index/time/date class and consistency with base R and the "ts" class for regular time series.
This paper describes how these are achieved within zoo and provides several illustrations of
the available methods for "zoo" objects which include plotting, merging and binding, several
mathematical operations, extracting and replacing data and index, coercion and NA handling.
A subclass "zooreg" embeds regular time series into the "zoo" framework and thus bridges
the gap between regular and irregular time series classes in R.

Keywords: totally ordered observations, irregular time series, regular time series, S3, R.

1. Introduction

The R system for statistical computing (R Development Core Team 2005, http://www.R-project.
org/) ships with a a class for regularly spaced time series, "ts" in package stats, but has no native
class for irregularly spaced time series. With the increased interest in computational finance with
R over the last years several implementations of classes for irregular time series emerged which are
aimed particularly at finance applications. These include the S3 classes "timeSeries" in package
fCalendar from the Rmetrics bundle (Wuertz 2004) and "irts" in package tseries (Trapletti 2005)
and the S4 class "its" in package its (Heywood 2004). With these packages available, why would
anybody want yet another package providing infrastructure for irregular time series? The above
mentioned implementations have in common that they are restricted to a particular class for the
time scale: the former implementation comes with its own time class "timeDate" built on top
of the "POSIXt" classes available in base R whereas the latter two use "POSIXct" directly. And
this was the starting point for the zoo project: the first author of the present paper needed more
general support for ordered observations, independent of a particular index class, for the package
strucchange (Zeileis, Leisch, Hornik, and Kleiber 2002). Hence the package was called zoo which
stands for Z’s ordered observations. Since the first release, a major part of the additions to zoo
were provided by the second author of this paper, so that the name of the package does not really
reflect the authorship anymore. Nevertheless, independence of a particular index class remained
the most important design goal. While the package evolved to its current status, a second key
design goal became more and more clear: to provide methods to standard generic functions for the
"zoo" class that are similar to those for the "ts" class (and base R in general) such that the usage
of zoo is very intuitive because few additional commands have to be learned. This paper describes
how these design goals are implemented in zoo. The resulting package provides the "zoo" class
which offers an extensive (and still growing) set of standard and new methods for working with
indexed observations and ‘talks’ to the classes "ts", "its", "irts" and "timeSeries". It also
bridges the gap between regular and irregular time series by providing coercion with (virtually)
no loss of information between "ts" and "zoo".

The remainder of the paper is organized as follows: Section 2 explains how "zoo" objects are
created and illustrates how the corresponding methods for plotting, merging and binding, several

http://www.R-project.org/
http://www.R-project.org/

2 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

mathematical operations, extracting and replacing data and index, coercion and NA handling can
be used. Section 3 outlines how other packages can build on this basic infrastructure. Section 4
gives a few summarizing remarks and an outlook on future developments. Finally, an appendix
provides a reference card that gives an overview of the functionality contained in zoo.

2. The class "zoo" and its methods

This section describes how "zoo" series can be created and subsequently manipulated, visualized,
combined or coerced to other classes. In Section 2.1, the general class "zoo" for totally ordered
series is described. Subsequently, in Section 2.2, the subclass "zooreg" for regular "zoo" series,
i.e., series which have an index with a specified frequency, is discussed. The methods illustrated in
the remainder of the section are mostly the same for both "zoo" and "zooreg" objects and hence
do not have to be discussed separately. The few differences in merging and binding are briefly
highlighted in Section 2.4.

2.1. Creation of "zoo" objects

The simple idea for the creation of "zoo" objects is to have some vector or matrix of observations
x which are totally ordered by some index vector. In time series applications, this index is a
measure of time but every other numeric, character or even more abstract vector that provides
a total ordering of the observations is also suitable. Objects of class "zoo" are created by the
function

zoo(x, order.by)

where x is the vector or matrix of observations1 and order.by is the index by which the observa-
tions should be ordered. It has to be of the same length as NROW(x), i.e., either the same length
as x for vectors or the same number of rows for matrices.2 The "zoo" object created is essentially
the vector/matrix as before but has an additional "index" attribute in which the index is stored.3

Both the observations in the vector/matrix x and the index order.by can, in principle, be of
arbitrary classes. However, most of the following methods (plotting, aggregating, mathematical
operations) for "zoo" objects are typically only useful for numeric observations x. Special effort
in the design was put into independence from a particular class for the index vector. In zoo, it is
assumed that combination c(), querying the length(), value matching MATCH(), subsetting [,,
and, of course, ordering ORDER() work when applied to the index. In addition, an as.character()
method might improve printed output4 and as.numeric() could be used for computing distances
between indexes, e.g., in interpolation. Both methods are not necessary for working with "zoo"
objects but could be used if available. All these methods are available, e.g., for standard numeric
and character vectors and for vectors of classes "Date", "POSIXct" or "times" from package
chron, but not for the class "dateTime" in fCalendar. In the last case, the solution is to pro-
vide methods for the above mentioned functions so that indexing "zoo" objects with "dateTime"
vectors works (see Section 3.3 for an example). To achieve this independence of the index class,
new generic functions for ordering (ORDER()) and value matching (MATCH()) are introduced as the
corresponding base functions order() and match() are non-generic. The default methods simply
call the corresponding base functions, i.e., no new method needs to be introduced for a particular
index class if the non-generic functions order() and match() work for this class.

1In principle, more general objects can be indexed, but currently zoo does not support this. Development plans
are that zoo should eventually support indexed factors, data frames and lists.

2The only case where this restriction is not imposed is for zero-length vectors, i.e., vectors that only have an
index but no data.

3There is some limited support for indexed factors available in which case the "zoo" object also has an attribute
"oclass" with the original class of x. This feature is still under development and might change in future versions.

4If an as.character() method is already defined, but gives not the desired output for printing, then an in-

dex2char() method can be defined. This is a generic convenience function used for creating character representations
of the index vector and it defaults to using as.character().

Achim Zeileis, Gabor Grothendieck 3

To illustrate the usage of zoo(), we first load the package and set the random seed to make the
examples in this paper exactly reproducible.

R> library(zoo)

R> set.seed(1071)

Then, we create two vectors z1 and z2 with "POSIXct" indexes, one with random observations

R> z1.index <- ISOdatetime(2004, rep(1:2, 5), sample(28, 10), 0,

+ 0, 0)

R> z1.data <- rnorm(10)

R> z1 <- zoo(z1.data, z1.index)

and one with a sine wave

R> z2.index <- as.POSIXct(paste(2004, rep(1:2, 5), sample(1:28,

+ 10), sep = "-"))

R> z2.data <- sin(2 * 1:10/pi)

R> z2 <- zoo(z2.data, z2.index)

Furthermore, we create a matrix Z with random observations and a "Date" index

R> Z.index <- as.Date(sample(12450:12500, 10))

R> Z.data <- matrix(rnorm(30), ncol = 3)

R> colnames(Z.data) <- c("Aa", "Bb", "Cc")

R> Z <- zoo(Z.data, Z.index)

In the examples above, the generation of indexes looks a bit awkward due to the fact the indexes
need to be randomly generated (and there are no special functions for random indexes because
these are rarely needed in practice). In “real world” applications, the indexes are typically part of
the raw data set read into R so the code would be even simpler. See Section 3 for such examples.5

Methods to several standard generic functions are available for "zoo" objects, such as print,
summary, str, head, tail and [(subsetting), a few of which are illustrated in the following.
There are three printing code styles for "zoo" objects: vectors are by default printed in "hori-
zontal" style

R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.74675994 0.02107873 -0.29823529 0.68625772 1.94078850 1.27384445
2004-02-12 2004-02-16 2004-02-20 2004-02-24
0.22170438 -2.07607585 -1.78439244 -0.19533304

R> z1[3:7]

2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
-0.2982353 0.6862577 1.9407885 1.2738445 0.2217044

and matrices in "vertical" style

R> Z

5Note, that in the code above a new as.Date method, provided in zoo, is used to convert days since 1970-01-01
to class "Date". See the respective help page for more details.

4 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

Aa Bb Cc
2004-02-02 1.25543390 0.68157316 -0.63292049
2004-02-08 -1.49458326 1.32341223 -1.49442269
2004-02-09 -1.87462247 -0.87329289 0.62733971
2004-02-21 -0.14538608 0.45234903 -0.14597401
2004-02-22 0.22542418 0.53838938 0.23136133
2004-02-29 1.20695518 0.31814222 -0.01129202
2004-03-05 -1.20861025 1.42379785 -0.81614483
2004-03-10 -0.11039563 1.34774254 0.95522468
2004-03-14 0.84202385 -2.73842019 0.23150695
2004-03-20 -0.19019104 0.12308872 -1.51862157

R> Z[1:3, 2:3]

Bb Cc
2004-02-02 0.6815732 -0.6329205
2004-02-08 1.3234122 -1.4944227
2004-02-09 -0.8732929 0.6273397

Additionally, there is a "plain" style which simply first prints the data and then the index.
Above, we have illustrated that "zoo" series can be indexed like vectors or matrices respectively,
i.e., with integers correponding to their observation number (and column number). But for indexed
observations, one would obviously also like to be able to index with the index class. This is
also available in [which only uses vector/matrix-type subsetting if its first argument is of class
"numeric", "integer" or "logical".

R> z1[ISOdatetime(2004, 1, c(14, 25), 0, 0, 0)]

2004-01-14 2004-01-25
0.02107873 0.68625772

If the index class happens to be "numeric", the index has to be either insulated in I() like z[I(i)]
or the window() method can be used (see Section 2.6).
Summaries and most other methods for "zoo" objects are carried out column wise, reflecting the
rectangular structure. In addition, a summary of the index is provided.

R> summary(z1)

Index z1
Min. :2004-01-05 00:00:00 Min. :-2.07608
1st Qu.:2004-01-20 12:00:00 1st Qu.:-0.27251
Median :2004-02-01 12:00:00 Median : 0.12139
Mean :2004-02-01 09:36:00 Mean : 0.05364
3rd Qu.:2004-02-15 00:00:00 3rd Qu.: 0.73163
Max. :2004-02-24 00:00:00 Max. : 1.94079

R> summary(Z)

Index Aa Bb Cc
Min. :2004-02-02 Min. :-1.8746 Min. :-2.7384 Min. :-1.51862
1st Qu.:2004-02-12 1st Qu.:-0.9540 1st Qu.: 0.1719 1st Qu.:-0.77034
Median :2004-02-25 Median :-0.1279 Median : 0.4954 Median :-0.07863
Mean :2004-02-25 Mean :-0.1494 Mean : 0.2597 Mean :-0.25739
3rd Qu.:2004-03-08 3rd Qu.: 0.6879 3rd Qu.: 1.1630 3rd Qu.: 0.23147
Max. :2004-03-20 Max. : 1.2554 Max. : 1.4238 Max. : 0.95522

Achim Zeileis, Gabor Grothendieck 5

2.2. Creation of "zooreg" objects

Strictly regular series are such series observations where the distance between the indexes of every
two adjacent observations is the same. Such series can also be described by their frequency, i.e.,
the reciprocal value of the distance between two observations. As "zoo" can be used to store series
with arbitrary type of index, it can, of course, also be used to store series with regular indexes.
So why should this case be given special attention, in particular as there is already the "ts" class
devoted entirely to regular series? There are two reasons: First, to be able to convert back and
forth between "ts" and "zoo", the frequency of a certain series needs to be stored on the "zoo"
side. Second, "ts" is limited to strictly regular series and the regularity is lost if some internal
observations are omitted. Series that can be created by omitting some internal observations from
strictly regular series will in the following be refered to as being (weakly) regular. Therefore, a
class that bridges the gap between irregular and strictly regular series is needed and "zooreg"
fills this gap. Objects of class "zooreg" inherit from class "zoo" but have an additional attribute
"frequency" in which the frequency of the series is stored. Therefore, they can be employed to
represent both strictly and weakly regular series.
To create a "zooreg" object, either the command zoo() can be used or the command zooreg().

zoo(x, order.by, frequency)

zooreg(data, start, end, frequency, deltat, ts.eps, order.by)

If zoo() is called as in the previous section but with an additional frequency argument, it
is checked whether frequency complies with the index order.by: if it does an object of class
"zooreg" inheriting from "zoo" is returned. The command zooreg() takes mostly the same ar-
guments as ts().6 In both cases, the index class is more restricted than in the plain "zoo" case.
The index must be of a class which can be coerced to "numeric" (for checking its regularity) and
when converted to numeric the index must be expressable as multiples of 1/frequency. Further-
more, adding/substracting a numeric to/from an observation of the index class, should return the
correct value of the index class again, i.e., group generic functions Ops should be defined.7

The following calls yield equivalent series

R> zr1 <- zooreg(sin(1:9), start = 2000, frequency = 4)

R> zr2 <- zoo(sin(1:9), seq(2000, 2002, by = 1/4), 4)

R> zr1

2000(1) 2000(2) 2000(3) 2000(4) 2001(1) 2001(2) 2001(3)
0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243 -0.2794155 0.6569866
2001(4) 2002(1)

0.9893582 0.4121185

R> zr2

2000(1) 2000(2) 2000(3) 2000(4) 2001(1) 2001(2) 2001(3)
0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243 -0.2794155 0.6569866
2001(4) 2002(1)

0.9893582 0.4121185

to which methods to standard generic functions for regular series can be applied, such as fre-
quency, deltat, cycle.
As stated above, the advantage of "zooreg" series is that they remain regular even if an internal
observation is dropped:

6Only if order.by is specified in the zooreg() call, then zoo(x, order.by, frequency) is called.
7An application of non-numeric indexes for regular series are the classes "yearmon" and "yearqtr" which are

designed for monthly and quarterly series respectively and are discussed in Section 3.4.

6 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

R> zr1 <- zr1[-c(3, 5)]

R> zr1

2000(1) 2000(2) 2000(4) 2001(2) 2001(3) 2001(4) 2002(1)
0.8414710 0.9092974 -0.7568025 -0.2794155 0.6569866 0.9893582 0.4121185

R> class(zr1)

[1] "zooreg" "zoo"

R> frequency(zr1)

[1] 4

This facilitates NA handling significantly compared to "ts" and makes "zooreg" a much more
attractive data type, e.g., for time series regression.
zooreg() can also deal with non-numeric indexes provided that adding "numeric" observations
to the index class preserves the class and does not coerce to "numeric".

R> zooreg(1:5, start = as.Date("2005-01-01"))

2005-01-01 2005-01-02 2005-01-03 2005-01-04 2005-01-05
1 2 3 4 5

To check whether a certain series is (strictly) regular, the new generic function is.regular(x,
strict = FALSE) can be used:

R> is.regular(zr1)

[1] TRUE

R> is.regular(zr1, strict = TRUE)

[1] FALSE

This function (and also the frequency, deltat and cycle) also work for "zoo" objects if the
regularity can still be inferred from the data:

R> zr1 <- as.zoo(zr1)

R> zr1

2000 2000.25 2000.75 2001.25 2001.5 2001.75 2002
0.8414710 0.9092974 -0.7568025 -0.2794155 0.6569866 0.9893582 0.4121185

R> class(zr1)

[1] "zoo"

R> is.regular(zr1)

[1] TRUE

R> frequency(zr1)

Achim Zeileis, Gabor Grothendieck 7

[1] 4

Of course, inferring the underlying regularity is not always reliable and it is safer to store a regular
series as a "zooreg" object if it is intended to be a regular series.
If a weakly regular series is coerced to "ts" the missing observations are filled with NAs (see also
Section 2.8). For strictly regular series with numeric index, the class can be switched between
"zoo" and "ts" without loss of information.

R> as.ts(zr1)

Qtr1 Qtr2 Qtr3 Qtr4
2000 0.8414710 0.9092974 NA -0.7568025
2001 NA -0.2794155 0.6569866 0.9893582
2002 0.4121185

R> identical(zr2, as.zoo(as.ts(zr2)))

[1] TRUE

This enables direct use of functions such as acf, arima, stl etc. on "zooreg" objects as these
methods coerce to "ts" first. The result only has to be coerced back to "zoo", if appropriate.

2.3. Plotting

The plot method for "zoo" objects, in particular for multivariate "zoo" series, is based on the
corresponding method for (multivariate) regular time series. It relies on plot and lines methods
being available for the index class which can plot the index against the observations.
By default the plot method creates a panel for each series

R> plot(Z)

but can also display all series in a single panel

R> plot(Z, plot.type = "single", col = 2:4)

In both cases additional graphical parameters like color col, plotting character pch and line type
lty can be expanded to the number of series. But the plot method for "zoo" objects offers some
more flexibility in specification of graphical parameters as in

R> plot(Z, type = "b", lty = 1:3, pch = list(Aa = 1:5, Bb = 2, Cc = 4),

+ col = list(Bb = 2, 4))

The argument lty behaves as before and sets every series in another line type. The pch argument
is a named list that assigns to each series a different vector of plotting characters each of which
is expanded to the number of observations. Such a list does not necessarily have to include the
names of all series, but can also specify a subset. For the remaining series the default parameter
is then used which can again be changed: e.g., in the above example the col argument is set to
display the series "Bb" in red and all remaining series in blue. The results of the multiple panel
plots are depicted in Figure 2 and the single panel plot in 1.

2.4. Merging and binding

As for many rectangular data formats in R, there are both methods for combining the rows and
columns of "zoo" objects respectively. For the rbind method the number of columns of the
combined objects has to be identical and the indexes may not overlap.

8 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

R> rbind(z1[5:10], z1[2:3])

2004-01-14 2004-01-19 2004-01-27 2004-02-07 2004-02-12 2004-02-16
0.02107873 -0.29823529 1.94078850 1.27384445 0.22170438 -2.07607585
2004-02-20 2004-02-24
-1.78439244 -0.19533304

The c method simply calls rbind and hence behaves in the same way.
The cbind method by default combines the columns by the union of the indexes and fills the
created gaps by NAs.

R> cbind(z1, z2)

z1 z2
2004-01-03 NA 0.94306673
2004-01-05 0.74675994 -0.04149429
2004-01-14 0.02107873 NA
2004-01-17 NA 0.59448077
2004-01-19 -0.29823529 -0.52575918
2004-01-24 NA -0.96739776
2004-01-25 0.68625772 NA
2004-01-27 1.94078850 NA
2004-02-07 1.27384445 NA
2004-02-08 NA 0.95605566
2004-02-12 0.22170438 -0.62733473
2004-02-13 NA -0.92845336
2004-02-16 -2.07607585 NA
2004-02-20 -1.78439244 NA
2004-02-24 -0.19533304 NA
2004-02-25 NA 0.56060280
2004-02-26 NA 0.08291711

−
2

−
1

0
1

Index

Z

Feb 02 Feb 12 Feb 22 Mar 03 Mar 13

Figure 1: Example of a single panel plot

Achim Zeileis, Gabor Grothendieck 9

A
a

−
1.

5
−

0.
5

0.
5

B
b

−
2

−
1

0
1

−
1.

5
−

0.
5

0.
5

C
c

Feb 02 Feb 12 Feb 22 Mar 03 Mar 13

Index

Z
A

a

−
1.

5
−

0.
5

0.
5

● ●

B
b

−
2

−
1

0
1

−
1.

5
−

0.
5

0.
5

C
c

Feb 02 Feb 12 Feb 22 Mar 03 Mar 13

Index

Z

Figure 2: Examples of multiple panel plots

10 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

In fact, the cbind method is synonymous with the merge method8 except that the latter provides
additional arguments which allow for combining the columns by the intersection of the indexes
using the argument all = FALSE

R> merge(z1, z2, all = FALSE)

z1 z2
2004-01-05 0.74675994 -0.04149429
2004-01-19 -0.29823529 -0.52575918
2004-02-12 0.22170438 -0.62733473

Additionally, the filling pattern can be changed in merge, the naming of the columns can be
modified and the return class of the result can be specified. In the case of merging of objects with
different index classes, R gives a warning and tries to coerce the indexes. Merging objects with
different index classes is generally discouraged—if it is used nevertheless, it is the responsibility
of the user to ensure that the result is as intended. If at least one of the merged/binded objects
was a "zooreg" object, then merge tries to return a "zooreg" object. This is done by assessing
whether there is a common maximal frequency and by checking whether the resulting index is still
(weakly) regular.
If non-"zoo" objects are included in merging, then merge gives plain vectors/factors/matrices the
index of the first argument (if it is of the same length). Scalars are always added for the full index
without missing values.

R> merge(z1, pi, 1:10)

z1 pi 1:10
2004-01-05 0.74675994 3.14159265 1.00000000
2004-01-14 0.02107873 3.14159265 2.00000000
2004-01-19 -0.29823529 3.14159265 3.00000000
2004-01-25 0.68625772 3.14159265 4.00000000
2004-01-27 1.94078850 3.14159265 5.00000000
2004-02-07 1.27384445 3.14159265 6.00000000
2004-02-12 0.22170438 3.14159265 7.00000000
2004-02-16 -2.07607585 3.14159265 8.00000000
2004-02-20 -1.78439244 3.14159265 9.00000000
2004-02-24 -0.19533304 3.14159265 10.00000000

Another function which performs operations along a subset of indexes is aggregate, which is
discussed in this section although it does not combine several objects. Using the aggregate
method, "zoo" objects are split into subsets along a coarser index grid, summary statistics are
computed for each and then the reduced object is returned. In the following example, first a
function is set up which returns for a given "Date" value the corresponding first of the month.
This function is then used to compute the coarser grid for the aggregate call: in the first example
the mean of the observations in the month is returned, in the second example the first observation.

R> firstofmonth <- function(x) as.Date(sub("..$", "01", format(x)))

R> aggregate(Z, firstofmonth(Z.index), mean)

Aa Bb Cc
2004-02-01 0.53820841 0.04508597 -0.12412352
2004-03-01 -1.18080051 0.58156655 -0.45730045

8Note, that in some situations the column naming in the resulting object is somewhat problematic in the cbind

method and the merge method might provide better formatting of the column names.

Achim Zeileis, Gabor Grothendieck 11

R> aggregate(Z, firstofmonth(Z.index), head, 1)

Aa Bb Cc
2004-02-01 1.2554339 0.6815732 -0.6329205
2004-03-01 -1.4945833 1.3234122 -1.4944227

2.5. Mathematical operations

To allow for standard mathematical operations among "zoo" objects, zoo extends group generic
functions Ops. These perform the operations only for the intersection of the indexes of the objects.
As an example, the summation and logical comparison with < of z1 and z2 yield

R> z1 + z2

2004-01-05 2004-01-19 2004-02-12
0.7052657 -0.8239945 -0.4056304

R> z1 < z2

2004-01-05 2004-01-19 2004-02-12
FALSE FALSE FALSE

Additionally, methods for transposing t of "zoo" objects—which coerces to a matrix before—and
computing cumulative quantities such as cumsum, cumprod, cummin, cummax which are all applied
column wise.

R> cumsum(Z)

Aa Bb Cc
2004-02-02 1.2554339 0.6815732 -0.6329205
2004-02-08 -0.2391494 2.0049854 -2.1273432
2004-02-09 -2.1137718 1.1316925 -1.5000035
2004-02-21 -2.2591579 1.5840415 -1.6459775
2004-02-22 -2.0337337 2.1224309 -1.4146162
2004-02-29 -0.8267785 2.4405731 -1.4259082
2004-03-05 -2.0353888 3.8643710 -2.2420530
2004-03-10 -2.1457844 5.2121135 -1.2868283
2004-03-14 -1.3037606 2.4736933 -1.0553214
2004-03-20 -1.4939516 2.5967820 -2.5739429

2.6. Extracting and replacing the data and the index

zoo provides several generic functions and methods to work on the data contained in a "zoo"
object, the index (or time) attribute associated to it, and on both data and index.
The data stored in "zoo" objects can be extracted by coredata which strips off all "zoo"-specific
attributes and it can be replaced using coredata<-. Both are new generic functions9 with methods
for "zoo" objects as illustrated in the following example.

R> coredata(z1)

9The coredata functionality is similar in spirit to the core function in its and value in tseries. However, the
focus of those functions is somewhat narrower and we try to provide more general purpose generic functions. See
the respective manual page for more details.

12 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

[1] 0.74675994 0.02107873 -0.29823529 0.68625772 1.94078850 1.27384445
[7] 0.22170438 -2.07607585 -1.78439244 -0.19533304

R> coredata(z1) <- 1:10

R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
1 2 3 4 5 6 7

2004-02-16 2004-02-20 2004-02-24
8 9 10

The index associated with a "zoo" object can be extracted by index and modified by index<-.
As the interpretation of the index as “time” in time series applications is natural, there are also
synonymous methods time and time<-. Hence, the commands index(z2) and time(z2) return
equivalent results.

R> index(z2)

[1] "2004-01-03 CET" "2004-01-05 CET" "2004-01-17 CET" "2004-01-19 CET"
[5] "2004-01-24 CET" "2004-02-08 CET" "2004-02-12 CET" "2004-02-13 CET"
[9] "2004-02-25 CET" "2004-02-26 CET"

The index scale of z2 can be changed to that of z1 by

R> index(z2) <- index(z1)

R> z2

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.94306673 -0.04149429 0.59448077 -0.52575918 -0.96739776 0.95605566
2004-02-12 2004-02-16 2004-02-20 2004-02-24
-0.62733473 -0.92845336 0.56060280 0.08291711

The start and the end of the index/time vector can be queried by start and end:

R> start(z1)

[1] "2004-01-05 CET"

R> end(z1)

[1] "2004-02-24 CET"

To work on both data and index/time, zoo provides window and window<- methods for "zoo"
objects. In both cases the window is specified by

window(x, index, start, end)

where x is the "zoo" object, index is a set of indexes to be selected (by default the full index of
x) and start and end can be used to restrict the index set.

R> window(Z, start = as.Date("2004-03-01"))

Aa Bb Cc
2004-03-05 -1.2086102 1.4237978 -0.8161448
2004-03-10 -0.1103956 1.3477425 0.9552247
2004-03-14 0.8420238 -2.7384202 0.2315069
2004-03-20 -0.1901910 0.1230887 -1.5186216

Achim Zeileis, Gabor Grothendieck 13

R> window(Z, index = index(Z)[5:8], end = as.Date("2004-03-01"))

Aa Bb Cc
2004-02-22 0.22542418 0.53838938 0.23136133
2004-02-29 1.20695518 0.31814222 -0.01129202

The first example selects all observations starting from 2004-03-01 whereas the second selects from
the from the 5th to 8th observation those up to 2004-03-01.
The same syntax can be used for the corresponding replacement function.

R> window(z1, end = as.POSIXct("2004-02-01")) <- 9:5

R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9 8 7 6 5 6 7

2004-02-16 2004-02-20 2004-02-24
8 9 10

Two methods that are standard in time series applications are lag and diff. These are available
with the same arguments as the "ts" methods.10

R> lag(z1, k = -1)

2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12 2004-02-16
9 8 7 6 5 6 7

2004-02-20 2004-02-24
8 9

R> merge(z1, lag(z1, k = 1))

z1 lag(z1, k = 1)
2004-01-05 9 8
2004-01-14 8 7
2004-01-19 7 6
2004-01-25 6 5
2004-01-27 5 6
2004-02-07 6 7
2004-02-12 7 8
2004-02-16 8 9
2004-02-20 9 10
2004-02-24 10 NA

R> diff(z1)

2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12 2004-02-16
-1 -1 -1 -1 1 1 1

2004-02-20 2004-02-24
1 1

10diff also has an additional argument that also allows for geometric and not only allows arithmetic differences.
Furthermore, note the sign of the lag in lag: by default it is positive and shifts the observations forward, to obtain
the more standard backward shift the lag has to be negative.

14 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

2.7. Coercion to and from "zoo"

Coercion to and from "zoo" objects is available for objects of various classes, in particular "ts",
"irts" and "its" objects can be coerced to "zoo" and back if the index is of the appropriate
class.11

Coercion between "zooreg" and "zoo" is also available and is essentially dropping the "fre-
quency" attribute or trying to add one, respectively.
Furthermore, "zoo" objects can be coerced to vectors, matrices, lists and data frames (the latter
dropping the index/time attribute). A simple example is

R> as.data.frame(Z)

Aa Bb Cc
2004-02-02 1.2554339 0.6815732 -0.63292049
2004-02-08 -1.4945833 1.3234122 -1.49442269
2004-02-09 -1.8746225 -0.8732929 0.62733971
2004-02-21 -0.1453861 0.4523490 -0.14597401
2004-02-22 0.2254242 0.5383894 0.23136133
2004-02-29 1.2069552 0.3181422 -0.01129202
2004-03-05 -1.2086102 1.4237978 -0.81614483
2004-03-10 -0.1103956 1.3477425 0.95522468
2004-03-14 0.8420238 -2.7384202 0.23150695
2004-03-20 -0.1901910 0.1230887 -1.51862157

2.8. NA handling

Four methods for dealing with NAs (missing observations) in the observations are applicable
to "zoo" objects: na.omit, na.contiguous, na.approx and na.locf. na.omit—or its de-
fault method to be more precise—returns a "zoo" object with incomplete observations removed.
na.contiguous extracts the longest consecutive stretch of non-missing values. Furthermore, new
generic functions na.approx and na.locf and corresponding default methods are introduced in
zoo. The former replaces NAs by linear interpolation (using the function approx) and the name
of the latter stands for last observation carried forward. It replaces missing observations by the
most recent non-NA prior to it. Leading NAs, which cannot be replaced by previous observations,
are removed in both functions by default.

R> z1[sample(1:10, 3)] <- NA

R> z1

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9 NA 7 6 5 6 NA

2004-02-16 2004-02-20 2004-02-24
8 9 NA

R> na.omit(z1)

2004-01-05 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-16 2004-02-20
9 7 6 5 6 8 9

R> na.contiguous(z1)

2004-01-19 2004-01-25 2004-01-27 2004-02-07
7 6 5 6

11Coercion from "zoo" to "irts" is contained in the tseries package.

Achim Zeileis, Gabor Grothendieck 15

R> na.approx(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9.000000 7.714286 7.000000 6.000000 5.000000 6.000000 7.111111

2004-02-16 2004-02-20
8.000000 9.000000

R> na.approx(z1, 1:NROW(z1))

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9 8 7 6 5 6 7

2004-02-16 2004-02-20
8 9

R> na.locf(z1)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07 2004-02-12
9 9 7 6 5 6 6

2004-02-16 2004-02-20 2004-02-24
8 9 9

As the above example illustrates, na.approx uses by default the underlying time scale for inter-
polation. This can be changed, e.g., to an equidistant spacing, by setting the second argument of
na.approx.

2.9. Rolling functions

A typical task to be performed on ordered observations is to evaluate some function, e.g., comput-
ing the mean, in a window of observations that is moved over the full sample period. The resulting
statistics are usually synonymously referred to as rolling/running/moving statistics. In zoo, the
generic function rapply is provided along with a "zoo" and a "ts" method. The most important
arguments are

rapply(data, width, FUN)

where the function FUN is applied to a rolling window of size width of the observations data.
The function rapply currently only evaluates the function for windows of full size width, hence
the result has width - 1 fewer observations than the original series. But it can be determined
whether the ‘lost’ observations should be padded with NAs and whether the result should be left-
or right-aligned or centered (default) with respect to the original index.

R> rapply(Z, 5, sd)

Aa Bb Cc
2004-02-09 1.2814876 0.8018950 0.8218959
2004-02-21 1.2658555 0.7891358 0.8025043
2004-02-22 1.2102011 0.8206819 0.5319727
2004-02-29 0.8662296 0.5266261 0.6411751
2004-03-05 0.9363400 1.7011273 0.6356144
2004-03-10 0.9508642 1.6892246 0.9578196

R> rapply(Z, 5, sd, na.pad = TRUE, align = "left")

16 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

Aa Bb Cc
2004-02-02 1.2814876 0.8018950 0.8218959
2004-02-08 1.2658555 0.7891358 0.8025043
2004-02-09 1.2102011 0.8206819 0.5319727
2004-02-21 0.8662296 0.5266261 0.6411751
2004-02-22 0.9363400 1.7011273 0.6356144
2004-02-29 0.9508642 1.6892246 0.9578196
2004-03-05 NA NA NA
2004-03-10 NA NA NA
2004-03-14 NA NA NA
2004-03-20 NA NA NA

To improve the performance of rapply(x, k, foo) for some frequently used functions foo, more
efficient implementations rollfoo(x, k) are available (and also called by rapply). Currently,
these are the generic functions rollmean, rollmedian and rollmax which have methods for "zoo"
and "ts" series and a default method for plain vectors.

R> rollmean(z2, 5, na.pad = TRUE)

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27
NA NA 0.0005792538 0.0031770388 -0.1139910497

2004-02-07 2004-02-12 2004-02-16 2004-02-20 2004-02-24
-0.4185778750 -0.2013054791 0.0087574946 NA NA

3. Combining zoo with other packages

The main purpose of the package zoo is to provide basic infrastructure for working with indexed
totally ordered observations that can be either employed by users directly or can be a basic
ingredient on top of which other packages can build. The latter is illustrated with a few brief
examples involving the packages strucchange, tseries and fCalendar in this section. Finally, the
classes "yearmon" and "yearqtr" (provided in zoo) are used for illustrating how zoo can be
extended by creating a new index class.

3.1. strucchange: Empirical fluctuation processes

The package strucchange provides a collection of methods for testing, monitoring and dating
structural changes, in particular in linear regression models. Tests for structural change assess
whether the parameters of a model remain constant over an ordering with respect to a specified
variable, usually time. To adequatly store and visualize empirical fluctuation processes which
capture instabilities over this ordering, a data type for indexed ordered observations is required.
This was the motivation for starting the zoo project.
A simple example for the need of "zoo" objects in strucchange which can not be (easily) imple-
mented by other irregular time series classes available in R is described in the following. We assess
the constancy of the electrical resistance over the apparent juice content of kiwi fruits.12 The data
set fruitohms is contained in the DAAG package (Maindonald and Braun 2004). The fitted ocus
object contains the OLS-based CUSUM process for the mean of the electrical resistance (variable
ohms) indexed by the juice content (variable juice).

R> library(strucchange)

R> library(DAAG)

12A different approach would be to test whether the slope of a regression of electrical resistance on juice content
changes with increasing juice content, i.e., to test for instabilities in ohms ~ juice instead of ohms ~ 1. Both lead
to similar results.

Achim Zeileis, Gabor Grothendieck 17

R> data(fruitohms)

R> ocus <- gefp(ohms ~ 1, order.by = ~juice, data = fruitohms)

R> plot(ocus)

10 20 30 40 50 60

0
1

2
3

4

juice

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

M−fluctuation test

Figure 3: Empirical M-fluctuation process for fruitohms data

This OLS-based CUSUM process can be visualized using the plot method for "gefp" objects
which builds on the "zoo" method and yields in this case the plot in Figure 3 showing the process
which crosses its 5% critical value and thus signals a significant decrease in the mean electrical
resistance over the juice content. For more information on the package strucchange and the
function gefp see Zeileis et al. (2002) and Zeileis (2004).

3.2. tseries: Historical financial data

A typical application for irregular time series which became increasingly important over the last
years in computational statistics and finance is daily (or higher frequent) financial data. The
package tseries provides the function get.hist.quote for obtaining historical financial data by
querying Yahoo! Finance at http://finance.yahoo.com/, an online portal quoting data provided
by Reuters. The following code queries the quotes of Lucent Technologies starting from 2001-01-01
until 2004-09-30:

R> library(tseries)

R> LU <- get.hist.quote(instrument = "LU", start = "2001-01-01",

+ end = "2004-09-30", origin = "1970-01-01")

In the returned LU object the irregular data is stored by extending it in a regular grid and filling
the gaps with NAs. The time is stored in days starting from an origin, in this case specified to
be 1970-01-01, the origin used by the Date class. This series can be transformed easily into an
irregular "zoo" series using a "Date" index. The log-difference returns for Lucent Technologies is
depicted in Figure 4.

R> LU <- as.zoo(LU)

http://finance.yahoo.com/

18 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

R> index(LU) <- as.Date(index(LU))

R> LU <- na.omit(LU)

R> plot(diff(log(LU)))

O
pe

n

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

H
ig

h

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

Lo
w

−
0.

2
0.

0
0.

2
0.

4
−

0.
2

0.
0

0.
1

0.
2

C
lo

se

2001 2002 2003 2004

Index

diff(log(LU))

Figure 4: Log-difference returns for Lucent Technologies

3.3. fCalendar: Indexes of class "timeDate"

Although the methods in zoo work out of the box for many index classes, it might be necessary
for some index classes to provide c, length, ORDER and MATCH methods such that the methods
in zoo work properly. An example for such an index class which requires a bit more attention is
"timeDate" from the fCalendar package.

Achim Zeileis, Gabor Grothendieck 19

But after the necessary methods have been defined

R> length.timeDate <- function(x) prod(x@Dim)

R> ORDER.timeDate <- function(x, ...) order(as.POSIXct(x), ...)

R> MATCH.timeDate <- function(x, table, nomatch = NA, ...) match(as.POSIXct(x),

+ as.POSIXct(table), nomatch = NA, ...)

the class "timeDate" can be used for indexing "zoo" objects. The following example illustrates
how z2 can be transformed to use the "timeDate" class.

R> library(fCalendar)

R> z2td <- zoo(coredata(z2), timeDate(index(z2), FinCenter = "GMT"))

R> z2td

2004-01-05 2004-01-14 2004-01-19 2004-01-25 2004-01-27 2004-02-07
0.94306673 -0.04149429 0.59448077 -0.52575918 -0.96739776 0.95605566
2004-02-12 2004-02-16 2004-02-20 2004-02-24
-0.62733473 -0.92845336 0.56060280 0.08291711

3.4. The classes "yearmon" and "yearqtr": Roll your own index

One of the strengths of the zoo package is its independence of the index class, such that the
index can be easily customized. The previous section already explained how an existing class
("timeDate") can be used as the index if the necessary methods are created. This section has a
similar but slightly different focus: it describes how new index classes can be created addressing
a certain type of indexes. These classes are "yearmon" and "yearqtr" (already contained in
zoo) which provide indexes for monthly and quarterly data respectively. As the code is virtually
identical for both classes—except that one has the frequency 12 and the other 4—we will only
discuss "yearmon" explicitly.
Of course, monthly data can simply be stored using a numeric index just as the class "ts" does.
The problem is that this does not have the meta-information attached that this is really specifying
monthly data which is in "yearmon" simply added by a class attribute. Hence, the class creator
is simply defined as

yearmon <- function(x) structure(floor(12*x + .0001)/12, class = "yearmon")

which is very similar to the as.yearmon coercion functions provided.
As "yearmon" data is now explicitly declared to describe monthly data, this can be exploited for
coercion to other time classes such as "Date", "POSIXct" or "POSIXlt" which by default associate
the first day within a month with a "yearmon" observation. Adding a format and as.character
method produces human readable character representations of "yearmon" data and Ops and MATCH
methods complete the methods needed for conveniently working with monthly data in zoo. Note,
that all of these methods are very simple and rather obvious (as can be seen in the zoo sources),
but prove very helpful in the following examples.
First, we transform the index of the regular series zr2 to "yearmon" to improve printing.

R> index(zr2) <- yearmon(index(zr2))

R> zr2

Jan 2000 Apr 2000 Jul 2000 Oct 2000 Jan 2001 Apr 2001 Jul 2001
0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243 -0.2794155 0.6569866
Oct 2001 Jan 2002
0.9893582 0.4121185

20 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

The index can easily be transformed to "Date", the default being the first day of the month but
which can also be changed to the last day of the month.

R> as.Date(index(zr2))

[1] "2000-01-01" "2000-04-01" "2000-07-01" "2000-10-01" "2001-01-01"
[6] "2001-04-01" "2001-07-01" "2001-10-01" "2002-01-01"

R> as.Date(index(zr2), frac = 1)

[1] "2000-01-31" "2000-04-30" "2000-07-31" "2000-10-31" "2001-01-31"
[6] "2001-04-30" "2001-07-31" "2001-10-31" "2002-01-31"

Furthermore, "yearmon" indexes can easily be coerced to "POSIXct" such that the series could be
exported as a "its" or "irts" series.

R> index(zr2) <- as.POSIXct(index(zr2))

R> as.irts(zr2)

2000-01-01 00:00:00 GMT 0.8415
2000-04-01 00:00:00 GMT 0.9093
2000-07-01 00:00:00 GMT 0.1411
2000-10-01 00:00:00 GMT -0.7568
2001-01-01 00:00:00 GMT -0.9589
2001-04-01 00:00:00 GMT -0.2794
2001-07-01 00:00:00 GMT 0.657
2001-10-01 00:00:00 GMT 0.9894
2002-01-01 00:00:00 GMT 0.4121

Again, this functionality makes switching between different time scales or index representations
particularly easy and zoo provides the user with the flexibility to adjust a certain index to his/her
problem of interest.

4. Summary and outlook

The package zoo provides an S3 class and methods for indexed totally ordered observations, such
as both regular and irregular time series. Its key design goals are independence of a particular
index class and compatibility with standard generics similar to the behaviour of the corresponding
"ts" methods. This paper describes how these are implemented in zoo and illustrates the usage of
the methods for plotting, merging and binding, several mathematical operations, extracting and
replacing data and index, coercion and NA handling.
An indexed object of class "zoo" can be thought of as data plus index where the data are essentially
vectors or matrices and the index can be a vector of (in principle) arbitrary class. For (weakly)
regular "zooreg" series, a "frequency" attribute is stored in addition. Therefore, objects of
classes "ts", "its", "irts" and "timeSeries" can easily be transformed into "zoo" objects—
the reverse transformation is also possible provided that the index fulfills the restrictions of the
respective class. Hence, the "zoo" class can also be used as the basis for other classes of indexed
observations and more specific functionality can be built on top of it. Furthremore, it bridges the
gap between irregular and regular series, facilitating operations such as NA handling compared to
"ts".
Whereas a lot of effort was put into achieving independence of a particular index class, the types
of data that can be indexed with "zoo" are currently limited to vectors and matrices, typically

Achim Zeileis, Gabor Grothendieck 21

containing numeric values. Although, there is some limited support available for indexed factors,
one important direction for future development of zoo is to add better support for other objects
that can also naturally be indexed including specifically factors, data frames and lists.

Computational details

The results in this paper were obtained using R 2.1.0 with the packages zoo 0.9–9, strucchange
1.2–10, fCalendar 201.10059, tseries 0.9–25 and DAAG 0.46. R itself and all packages used are
available from CRAN at http://CRAN.R-project.org/.

References

Heywood G (2004). its: Irregular Time Series. Portfolio & Risk Advisory Group and Com-
merzbank Securities. R package version 1.0.4.

Maindonald J, Braun WJ (2004). DAAG: Data Analysis and Graphics. R package version 0.46,
URL http://www.stats.uwo.ca/DAAG/.

R Development Core Team (2005). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3, URL http:
//www.R-project.org/.

Trapletti A (2005). tseries: Time Series Analysis and Computational Finance. R package version
0.9-25.

Wuertz D (2004). Rmetrics: An Environment and Software Collection for Teaching Financial
Engineering and Computational Finance. R package fCalendar, version 201.10059, URL http:
//www.Rmetrics.org/.

Zeileis A (2004). “Implementing a Class of Structural Change Tests: An Econometric Computing
Approach.” Report 7, Department of Statistics and Mathematics, Wirtschaftsuniversität Wien,
Research Report Series. URL http://epub.wu-wien.ac.at/.

Zeileis A, Leisch F, Hornik K, Kleiber C (2002). “strucchange: An R Package for Testing for
Structural Change in Linear Regression Models.” Journal of Statistical Software, 7(2), 1–38.
URL http://www.jstatsoft.org/v07/i02/.

http://CRAN.R-project.org/
http://www.stats.uwo.ca/DAAG/
http://www.R-project.org/
http://www.R-project.org/
http://www.Rmetrics.org/
http://www.Rmetrics.org/
http://epub.wu-wien.ac.at/
http://www.jstatsoft.org/v07/i02/

22 zoo: An S3 Class and Methods for Indexed Totally Ordered Observations

A. Reference card

Creation
zoo(x, order.by) creation of a "zoo" object from the observations x (a vector

or a matrix) and an index order.by by which the observa-
tions are ordered.
For computations on arbitrary index classes, methods to
the following genric functions are assumed to work: combin-
ing c(), querying length length(), subsetting [, ordering
ORDER() and value matching MATCH(). For pretty print-
ing an as.character and/or index2char method might
be helpful.

Creation of regular series
zoo(x, order.by, freq) works as above but creates a "zooreg" object which inherits

from "zoo" if the frequency freq complies with the index
order.by. An as.numeric method has to be available for
the index class.

zooreg(x, start, end, freq) creates a "zooreg" series with a numeric index as above
and has (almost) the same interface as ts().

Standard methods
plot plotting
lines adding a "zoo" series to a plot
print printing

summary summarizing (column-wise)
str displaying structure of "zoo" objects

head, tail head and tail of "zoo" objects

Coercion
as.zoo coercion to "zoo" is available for objects of class "ts",

"its", "irts" (plus a default method).
as.class.zoo coercion from "zoo" to other classes. Currently available

for class in "matrix", "vector", "data.frame", "list",
"irts", "its" and "ts".

is.zoo querying wether an object is of class "zoo"

Merging and binding
merge union, intersection, left join, right join along indexes
cbind column binding along the intersection of the index

c, rbind combining/row binding (indexes may not overlap)
aggregate compute summary statistics along a coarser grid of indexes

Mathematical operations
Ops group generic functions performed along the intersection of

indexes
t transposing (coerces to "matrix" before)

cumsum compute (columnwise) cumulative quantities: sums cum-
sum(), products cumprod(), maximum cummax(), mini-
mum cummin().

Achim Zeileis, Gabor Grothendieck 23

Extracting and replacing data and index
index, time extract the index of a series

index<-, time<- replace the index of a series
coredata, coredata<- extract and replace the data associated with a "zoo" object

lag lagged observations
diff arithmetic and geometric differences

start, end querying start and end of a series
window, window<- subsetting of "zoo" objects using their index

NA handling
na.omit omit NAs

na.contiguous compute longest sequence of non-NA observations
na.locf impute NAs by carrying forward the last observation

na.approx impute NAs by interpolation

Rolling functions
rapply apply a function to rolling margin of an array

rollmean more efficient functions for computing the rolling mean, me-
dian and maximum are rollmean(), rollmedian() and
rollmax(), respectively

Methods for regular series
is.regular checks whether a series is weakly (or strictly if strict =

TRUE) regular
frequency, deltat extracts the frequency or its reciprocal value respectively

from a series, for "zoo" series the functions try to determine
the regularity and frequency in a data-driven way

cycle gives the position in the cycle of a regular series

	Introduction
	The class "zoo" and its methods
	Creation of "zoo" objects
	Creation of "zooreg" objects
	Plotting
	Merging and binding
	Mathematical operations
	Extracting and replacing the data and the index
	Coercion to and from "zoo"
	NA handling
	Rolling functions

	Combining zoo with other packages
	strucchange: Empirical fluctuation processes
	tseries: Historical financial data
	fCalendar: Indexes of class "timeDate"
	The classes "yearmon" and "yearqtr": Roll your own index

	Summary and outlook
	Reference card

