Evaluation of Modeling without Information Leakage


[Up] [Top]

Documentation for package ‘emil’ version 1.1-6

Help Pages

as.character.outcome Convert outcome vector to character vector
as.data.frame.outcome Convert outcome vector to data frame
as.matrix.outcome Convert outcome vector to matrix
as.outcome Convert object to outcome vector
as.outcome.Surv Convert Surv vector to outcome vector
as.Surv Convert object to Surv vector
as.Surv.outcome Convert outcome vector to Surv vector
as.Surv.Surv Trivial function
batch.model Perform modeling
detune Tune parameters of modeling procedures
dim.outcome Dimension of an outcome vector
emil Introduction to the emil package
emil.extensions Extending the emil framework with user-defined methods
emil.fit.caret Fit a model using the caret package
emil.fit.cforest Fit conditional inference forest
emil.fit.glmnet Fit GLM with LASSO, Ridge or elastic net regularization.
emil.fit.lda Fit linear discriminant
emil.fit.lm Fit a linear model fitted with ordinary least squares
emil.fit.pamr Fit nearest shrunken centroids model.
emil.fit.qda Fit quadratic discriminant.
emil.fit.randomForest Fit random forest.
emil.predict.caret Predict using a caret method
emil.predict.cforest Predict with conditional inference forest
emil.predict.glmnet Predict using generalized linear model with elastic net regularization
emil.predict.lda Prediction using already trained prediction model
emil.predict.lm Prediction using linear model
emil.predict.pamr Prediction using nearest shrunken centroids.
emil.predict.qda Prediction using already trained classifier.
emil.predict.randomForest Prediction using random forest.
emil.vimp.pamr Variable importance of nearest shrunken centroids.
emil.vimp.randomForest Variable importance of random forest.
error.fun Performance estimation functions
error.rate Performance estimation functions
evaluate.modeling Performance estimation of modeling procedures
factor.events Get events on factor form
fill Replace values with something else
fit Fit a model
image.crossval Visualize resampling scheme
image.resample Visualize resampling scheme
impute Regular imputation
impute.knn Regular imputation
impute.median Regular imputation
index.fit Convert a fold to row indexes of fittdng or test set
index.test Convert a fold to row indexes of fittdng or test set
integer.events Return events in integer form
is.blank Wrapper for several methods to test if a variable is empty
is.na.outcome Check for missing values
is.outcome Test if object is of class outcome
is.tunable Tune parameters of modeling procedures
is.tuned Tune parameters of modeling procedures
length.outcome Length of an outcome vector
modeling.procedure Setup a modeling procedure
mse Performance estimation functions
na.fill Replace values with something else
neg.auc Performance estimation functions
neg.gmpa Negative geometric mean of class specific predictive accuracy
neg.harrell.C Performance estimation functions
nice.require Load a package and offer to install if missing
outcome Create a vector of outcomes
p.value Extraction of p-value from a statistical test
p.value.coxph Extract p-value from a Cox proportional hazards model
p.value.crr Extracts p-value from a competing risk model
p.value.cuminc Extract p-value from a cumulative incidence estimation
p.value.survdiff Extracts p-value from a logrank test
plot.outcome Plot outcome vector
pre.center Data preprocessing
pre.impute.knn kNN imputation
pre.impute.median Data preprocessing
pre.pamr PAMR adapted dataset pre-processing
pre.process Data preprocessing
pre.scale Data preprocessing
pre.split Data preprocessing
predict.modeling.procedure Predict the response of unknown observations
print.outcome Print outcome vector
resample Resampling schemes
resample.crossval Resampling schemes
resample.holdout Resampling schemes
resample.mapply Compare true response to resampled predictions
reset.warn.once Print a warning message if not printed earlier
rmse Performance estimation functions
subframe Extract and organize predictions according to a resampling scheme
subresample Generate resampling subschemes
subtree Extract a subset of a tree of nested lists
trace.msg Print a timestamped and indented log message
tune Tune parameters of modeling procedures
vimp Variable importance of a fitted model
warn.once Print a warning message if not printed earlier
weighted.error.rate Weighted error rate
[.outcome Extract