stability.par {agricolae}R Documentation

Stability analysis. SHUKLA'S STABILITY VARIANCE AND KANG'S

Description

This procedure calculates the stability variations as well as the statistics of selection for the yield and the stability. The averages of the genotype through the different environment repetitions are required for the calculations. The mean square error must be calculated from the joint variance analysis.

Usage

stability.par(data,rep,MSerror,alpha=0.1,main=NULL,cova = FALSE,name.cov=NULL,file.cov=0)

Arguments

data matrix of averages, by rows the genotypes and columns the environment
rep Number of repetitions
MSerror Mean Square Error
alpha Label significant
main Title
cova Covariable
name.cov Name covariable
file.cov Data covariable

Value

data Numeric
rep Constant numeric
MSerror Constant numeric
alpha Constant numeric
main Text
cova FALSE or TRUE
name.cov Text
file.cov Vector numeric

Author(s)

Felipe de Mendiburu

References

Kang, M. S. 1993. Simultaneous selection for yield and stability: Consequences for growers. Agron. J. 85:754-757

See Also

stability.nonpar

Examples

library(agricolae)
# example 1
# Experimental data,
# replication rep= 4
# Mean square error, MSerror = 1.8
# 12 environment
# 13 genotype  = 1,2,3,.., 13
# yield averages of 13 genotypes in localities
V1 <- c(10.2, 8.8, 8.8, 9.3, 9.6, 7.2, 8.4, 9.6, 7.9, 10, 9.3, 8.0, 10.1)
V2 <- c(7, 7.8, 7.0, 6.9, 7, 8.3, 7.4, 6.5,     6.8, 7.9, 7.3, 6.8, 8.1)
V3 <- c(5.3, 4.4, 5.3, 4.4, 5.6, 4.6, 6.2, 6.0, 6.5, 5.3, 5.7, 4.4, 4.2)
V4 <- c(7.8, 5.9, 7.3, 5.9, 7.8, 6.3, 7.9, 7.5, 7.6, 5.4, 5.6, 7.8, 6.5)
V5 <- c(9, 9.2, 8.8, 10.6, 8.3, 9.3, 9.6, 8.8, 7.9, 9.1, 7.7, 9.5, 9.4)
V6 <- c(6.9, 7.7, 7.9, 7.9, 7, 8.9,     9.4, 7.9, 6.5, 7.2, 5.4, 6.2, 7.2)
V7 <- c(4.9, 2.5, 3.4, 2.5, 3,2.5, 3.6, 5.6,3.8, 3.9, 3.0, 3.0, 2.5)
V8 <- c(6.4, 6.4, 8.1, 7.2, 7.5, 6.6, 7.7, 7.6, 7.8, 7.5, 6.0, 7.2, 6.8)
V9 <- c(8.4, 6.1, 6.8, 6.1, 8.2, 6.9, 6.9, 9.1, 9.2, 7.7, 6.7, 7.8, 6.5)
V10 <-c(8.7, 9.4, 8.8, 7.9, 7.8, 7.8, 11.4, 9.9, 8.6, 8.5, 8.0, 8.3, 9.1)
V11 <-c(5.4, 5.2, 5.6, 4.6, 4.8, 5.7, 6.6, 6.8, 5.2, 4.8, 4.9, 5.4, 4.5)
V12 <-c(8.6, 8.0, 9.2, 8.1, 8.3, 8.9, 8.6, 9.6, 9.5, 7.7, 7.6, 8.3, 6.6)
data<-data.frame(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12)
rownames(data)<-LETTERS[1:13]
stability.par(data, rep=4, MSerror=1.8, alpha=0.1, main="Genotype")

#example 2 covariable. precipitation
precipitation<- c(1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100)
stability.par(data, rep=4, MSerror=1.8, alpha=0.1, main="Genotype",
 cova=TRUE, name.cov="Precipitation", file.cov=precipitation)


[Package agricolae version 1.0-3 Index]