RM {eRm}R Documentation

Estimation of Rasch Models

Description

This function computes the parameter estimates of a Rasch model for binary item responses by using CML estimation.

Usage

RM(X, W, se = TRUE, sum0 = TRUE, etaStart)

Arguments

X Input 0/1 data matrix or data frame; rows represent individuals, columns represent items. Missing values are inserted as NA.
W Design matrix for the Rasch model. If omitted, the function will compute W automatically.
se If TRUE, the standard errors are computed.
sum0 If TRUE, the parameters are normed to sum-0 by specifying an appropriate W. If FALSE, the first parameter is restricted to 0.
etaStart A vector of starting values for the eta parameters can be specified. If missing, the 0-vector is used.

Details

For estimating the item parameters the CML method is used. Available methods for RM-objects are print, coef, model.matrix, vcov, summary, logLik, person.parameters, plotICC, plotjointICC, LRtest, Waldtest.

Value

Returns an object of class dRm, Rm, eRm and contains the log-likelihood value, the parameter estimates and their standard errors.

loglik Conditional log-likelihood.
iter Number of iterations.
npar Number of parameters.
convergence See code output in nlm.
etapar Estimated basic item parameters.
se.eta Standard errors of the estimated basic item parameters.
betapar Estimated item (easiness) parameters.
se.beta Standard errors of item parameters.
hessian Hessian matrix if se = TRUE.
W Design matrix.
X Data matrix.
X01 Dichotomized data matrix.
call The matched call.

Author(s)

Patrick Mair, Reinhold Hatzinger

References

Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer.

Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20.

Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.

See Also

RSM,PCM, LRtest, Waldtest

Examples


# Rasch model with beta.1 restricted to 0
data(raschdat1)
res <- RM(raschdat1, sum0 = FALSE)
print(res)
summary(res)
res$W                                       #generated design matrix

# Rasch model with sum-0 beta restriction; no standard errors computed
res <- RM(raschdat1, se = FALSE, sum0 = TRUE)
print(res)
summary(res)
res$W                                       #generated design matrix

#Rasch model with missing values
data(raschdat2)
res <- RM(raschdat2)
print(res)
summary(res)


[Package eRm version 0.9-5 Index]