Package for Deep Architectures and Restricted Boltzmann Machines


[Up] [Top]

Documentation for package ‘darch’ version 0.10.0

Help Pages

A B C D F G I L M N P Q R S T V

-- A --

applyDropoutMask Applies the given dropout mask to the given data row-wise.

-- B --

backpropagation Backpropagation learning function
binSigmoidUnit Binary sigmoid unit function.

-- C --

createDataSet Create data set using data, targets, a formula, and possibly an existing data set.
createDataSet-method Create new 'DataSet' by filling an existing one with new data.
createDataSet-method Create 'DataSet' using data and targets.
createDataSet-method Constructor function for 'DataSet' objects.
createDataSet.DataSet Create new 'DataSet' by filling an existing one with new data.
createDataSet.default Create 'DataSet' using data and targets.
createDataSet.formula Constructor function for 'DataSet' objects.
crossEntropyError Cross entropy error function

-- D --

DArch Class for deep architectures
darch Fit a deep neural network.
DArch-class Class for deep architectures
darch.DataSet Create and train DArch object using a 'DataSet'.
darch.default Fit deep neural network.
darch.formula Fit a deep neural network using a formula and a single data frame or matrix.
DataSet Class for specifying datasets.
dataset Class for specifying datasets.
DataSet-class Class for specifying datasets.

-- F --

fineTuneDArch Fine tuning function for the deep architecture
fineTuneDArch-method Fine tuning function for the deep architecture

-- G --

generateDropoutMask Dropout mask generator function.
generateRBMs Generates the RBMs for the pre-training.
generateRBMs-method Generates the RBMs for the pre-training.
generateWeights Generates a weight matrix.
getBatchSize Returns the batch size of the 'Net'.
getBatchSize-method Returns the batch size of the 'Net'.
getCancel Returns the cancel value
getCancel-method Returns the cancel value
getCancelMessage Returns the cancel message
getCancelMessage-method Returns the cancel message
getDropoutHiddenLayers Returns the dropout rate for the hidden layers
getDropoutHiddenLayers-method Returns the dropout rate for the hidden layers
getDropoutInputLayer Returns the dropout rate for the input layer
getDropoutInputLayer-method Returns the dropout rate for the input layer
getDropoutMask Returns the dropout mask for the given layer
getDropoutMask-method Returns the dropout mask for the given layer
getDropoutMasks Returns the dropout masks
getDropoutMasks-method Returns the dropout masks
getDropoutOneMaskPerEpoch Return the dropout usage
getDropoutOneMaskPerEpoch-method Return the dropout usage
getEpochs Returns the number of epochs the 'Net' was trained for
getEpochs-method Returns the number of epochs the 'Net' was trained for
getErrorFunction Returns the error function of the 'Net'.
getErrorFunction-method Returns the error function of the 'Net'.
getExecOutput Returns the execution output of the layer from the 'DArch' object
getExecOutput-method Returns the execution output of the layer from the 'DArch' object
getExecOutputs Returns the execution output list of the 'DArch' object
getExecOutputs-method Returns the execution output list of the 'DArch' object
getExecuteFunction Returns the function for the execution of the 'DArch' network
getExecuteFunction-method Returns the function for the execution of the 'DArch' network
getFF Returns if the weights are saved as ff objects
getFF-method Returns if the weights are saved as ff objects
getFinalMomentum Returns the final momentum of the 'Net'.
getFinalMomentum-method Returns the final momentum of the 'Net'.
getFineTuneFunction Returns the fine tune function for the 'DArch' object
getFineTuneFunction-method Returns the fine tune function for the 'DArch' object
getGenWeightFunction Returns the function for generating weight matrices.
getGenWeightFunction-method Returns the function for generating weight matrices.
getHiddenBiases Returns the biases of the hidden units.
getHiddenBiases-method Returns the biases of the hidden units.
getHiddenBiasesInc Returns the update value for the biases of the hidden units.
getHiddenBiasesInc-method Returns the update value for the biases of the hidden units.
getHiddenUnitStates Returns a list with the states of the hidden units.
getHiddenUnitStates-method Returns a list with the states of the hidden units.
getInitialMomentum Returns the momentum of the 'Net'
getInitialMomentum-method Returns the momentum of the 'Net'
getLayer Returns a layer from the 'DArch' object
getLayer-method Returns a layer from the 'DArch' object
getLayerField Returns the field of a layer from the 'DArch' object
getLayerField-method Returns the field of a layer from the 'DArch' object
getLayerFunction Returns the neuron function of a layer from the 'DArch' object
getLayerFunction-method Returns the neuron function of a layer from the 'DArch' object
getLayers Returns the a list of layers from the 'DArch' object
getLayers-method Returns the a list of layers from the 'DArch' object.
getLayerWeights Returns the weights of a layer from the 'DArch' object
getLayerWeights-method Returns the weights of a layer from the 'DArch' object
getLearnRateBiases Returns the learning rate for the bias weights of the 'DArch' object
getLearnRateBiases-method Returns the learning rate for the bias weights of the 'DArch' object
getLearnRateBiasHidden Returns the learning rate for the hidden biases.
getLearnRateBiasHidden-method Returns the learning rate for the hidden biases.
getLearnRateBiasVisible Returns the learning rate for the visible biases.
getLearnRateBiasVisible-method Returns the learning rate for the visible biases.
getLearnRateWeights Returns the learn rate of the weights.
getLearnRateWeights-method Returns the learn rate of the weights.
getMomentum Returns the current momentum of the 'Net'.
getMomentum-method Returns the current momentum of the 'Net'.
getMomentumSwitch Returns the momentum switch of the 'Net'.
getMomentumSwitch-method Returns the momentum switch of the 'Net'.
getNormalizeWeights Returns whether weight normalization is active
getNormalizeWeights-method Returns whether weight normalization is active
getNumHidden Returns the number of hidden units of the 'RBM'
getNumHidden-method Returns the number of hidden units of the 'RBM'
getNumVisible Returns the number of visible units of the 'RBM'
getNumVisible-method Returns the number of visible units of the 'RBM'
getOutput Returns the output of the 'RBM'
getOutput-method Returns the output of the 'RBM'
getPosPhaseData Returns the data for the positive phase.
getPosPhaseData-method Returns the data for the positive phase.
getRBMList Returns a list of 'RBM's of the 'DArch' object
getRBMList-method Returns a list of 'RBM's of the 'DArch' object
getStats Returns the list of statistics for the network
getStats-method Returns the list of statistics for the network
getVisibleBiases Returns the biases of the visible units.
getVisibleBiases-method Returns the biases of the visible units.
getVisibleBiasesInc Returns the update value for the biases of the visible units.
getVisibleBiasesInc-method Returns the update value for the biases of the visible units.
getVisibleUnitStates Returns a list with the states of the visible units.
getVisibleUnitStates-method Returns a list with the states of the visible units.
getWeightCost Returns the weigth cost for the training
getWeightCost-method Returns the weigth cost for the training
getWeightInc Returns the update value for the weights.
getWeightInc-method Returns the update value for the weights.
getWeights Returns the weights of the 'RBM'.
getWeights-method Returns the weights of the 'RBM'.

-- I --

incrementEpochs Increment the number of epochs this 'Net' has been trained for
incrementEpochs-method Increment the number of epochs this 'Net' has been trained for

-- L --

linearUnit Linear unit function.
linearUnitDerivative Linear unit function with unit derivatives.
linearUnitFunc Calculates the linear neuron output no transfer function
loadDArch Loads a DArch network
loadRBM Loads a RBM network
loadRBMFFWeights Loads weights and biases for a RBM network from a ffData file.

-- M --

makeStartEndPoints Makes start- and end-points for the batches.
maxoutUnitDerivative Maxout unit function with unit derivatives.
minimize Minimize a differentiable multivariate function.
minimizeAutoencoder Conjugate gradient for a autoencoder network
minimizeClassifier Conjugate gradient for a classification network
mseError Mean squared error function

-- N --

Net Abstract class for neural networks.
Net-class Abstract class for neural networks.
newDArch Constructor function for 'DArch' objects.
newRBM Constructor function for RBM object.

-- P --

predict.DArch Forward-propagate data.
predict.darch Forward-propagate data.
preTrainDArch Pre-trains a 'DArch' network
preTrainDArch-method Pre-trains a 'DArch' network
print.DArch Print DArch details.
print.darch Print DArch details.
provideMNIST Provides MNIST data set in the given folder.

-- Q --

quadraticError Quadratic error function

-- R --

RBM Class for restricted Boltzmann machines
RBM-class Class for restricted Boltzmann machines
rbmUpdate Function for updating the weights and biases of an 'RBM'
readMNIST Function for generating ff files of the MNIST Database
removeLayerField Removes a layer from the 'DArch' object
removeLayerField-method Removes a layer from the 'DArch' object
resetDArch Resets the weights and biases of the 'DArch' object
resetDArch-method Resets the weights and biases of the 'DArch' object
resetExecOutput Resets the output list of the 'DArch' object
resetExecOutput-method Resets the output list of the 'DArch' object
resetRBM Resets the weights and biases of the 'RBM' object
resetRBM-method Resets the weights and biases of the 'RBM' object
rpropagation Resilient backpropagation training for deep architectures.
runDArch Execute the darch

-- S --

saveDArch Saves a DArch network
saveDArch-method Saves a DArch network
saveRBM Saves a RBM network
saveRBM-method Saves a RBM network
saveRBMFFWeights Saves weights and biases of a RBM network into a ffData file.
saveRBMFFWeights-method Saves weights and biases of a RBM network into a ffData file.
setBatchSize Sets the batch size of the 'Net'.
setBatchSize<- Sets the batch size of the 'Net'.
setBatchSize<--method Sets the batch size of the 'Net'.
setCancel Set whether the learning shall be canceled.
setCancel<- Set whether the learning shall be canceled.
setCancel<--method Set whether the learning shall be canceled.
setCancelMessage Sets the cancel message.
setCancelMessage<- Sets the cancel message.
setCancelMessage<--method Sets the cancel message.
setDropoutHiddenLayers Sets the dropout rate for the hidden layers.
setDropoutHiddenLayers<- Sets the dropout rate for the hidden layers.
setDropoutHiddenLayers<--method Sets the dropout rate for the hidden layers.
setDropoutInputLayer Sets the dropout rate for the input layer.
setDropoutInputLayer<- Sets the dropout rate for the input layer.
setDropoutInputLayer<--method Sets the dropout rate for the input layer.
setDropoutMask Set the dropout mask for the given layer.
setDropoutMask<- Set the dropout mask for the given layer.
setDropoutMask<--method Set the dropout mask for the given layer.
setDropoutMasks Set the dropout masks.
setDropoutMasks<- Set the dropout masks.
setDropoutMasks<--method Set the dropout masks.
setDropoutOneMaskPerEpoch<- Set dropout mask usage
setDropoutOneMaskPerEpoch<--method Set dropout mask usage
setErrorFunction Sets the error function of the 'Net'.
setErrorFunction<- Sets the error function of the 'Net'.
setErrorFunction<--method Sets the error function of the 'Net'.
setExecuteFunction Sets the execution function for the network
setExecuteFunction<- Sets the execution function for the network
setExecuteFunction<--method Sets the execution function for the network
setFF Sets if the weights are saved as ff objects
setFF<- Sets if the weights are saved as ff objects
setFF<--method Sets if the weights are saved as ff objects
setFinalMomentum Sets the final momentum of the 'Net'.
setFinalMomentum<- Sets the final momentum of the 'Net'.
setFinalMomentum<--method Sets the final momentum of the 'Net'.
setFineTuneFunction Sets the fine tuning function for the network
setFineTuneFunction<- Sets the fine tuning function for the network
setFineTuneFunction<--method Sets the fine tuning function for the network
setGenWeightFunction Sets the function for generating weight matrices.
setGenWeightFunction<- Sets the function for generating weight matrices.
setGenWeightFunction<--method Sets the function for generating weight matrices.
setHiddenBiases Sets the biases of the hidden units for the 'RBM' object
setHiddenBiases<- Sets the biases of the hidden units for the 'RBM' object
setHiddenBiases<--method Sets the biases of the hidden units for the 'RBM' object
setHiddenBiasesInc Sets the update value for the biases of the hidden units
setHiddenBiasesInc<- Sets the update value for the biases of the hidden units
setHiddenBiasesInc<--method Sets the update value for the biases of the hidden units
setHiddenUnitFunction Sets the unit function of the hidden units
setHiddenUnitFunction<- Sets the unit function of the hidden units
setHiddenUnitFunction<--method Sets the unit function of the hidden units
setHiddenUnitStates Sets the states of the hidden units
setHiddenUnitStates<- Sets the states of the hidden units
setHiddenUnitStates<--method Sets the states of the hidden units
setInitialMomentum<- Sets the initial momentum of the 'Net'
setInitialMomentum<--method Sets the initial momentum of the 'Net'
setLayer Sets a layer with the given index for the network
setLayer<- Sets a layer with the given index for the network
setLayer<--method Sets a layer with the given index for the network
setLayerField Sets a field in a layer.
setLayerField<- Sets a field in a layer.
setLayerField<--method Sets a field in a layer.
setLayerFunction Sets the function for a layer with the given index
setLayerFunction<- Sets the function for a layer with the given index
setLayerFunction<--method Sets the function for a layer with the given index
setLayers Sets the layers for the network
setLayers<- Sets the layers for the network
setLayers<--method Sets the layers for the network
setLayerWeights Sets the weights of a layer with the given index
setLayerWeights<- Sets the weights of a layer with the given index
setLayerWeights<--method Sets the weights of a layer with the given index
setLearnRateBiases Sets the learning rate for the biases
setLearnRateBiases<- Sets the learning rate for the biases
setLearnRateBiases<--method Sets the learning rate for the biases
setLearnRateBiasHidden Sets the learning rates of the biases for the hidden units
setLearnRateBiasHidden<- Sets the learning rates of the biases for the hidden units
setLearnRateBiasHidden<--method Sets the learning rates of the biases for the hidden units
setLearnRateBiasVisible Sets the learnig rates of the biases for the visible units
setLearnRateBiasVisible<- Sets the learnig rates of the biases for the visible units
setLearnRateBiasVisible<--method Sets the learnig rates of the biases for the visible units
setLearnRateWeights Sets the learning rate for the weights.
setLearnRateWeights<- Sets the learning rate for the weights.
setLearnRateWeights<--method Sets the learning rate for the weights.
setLogLevel Sets the log level for the 'Net'.
setLogLevel<- Sets the log level for the 'Net'.
setLogLevel<--method Sets the log level for the 'Net'.
setMomentumSwitch Sets the momentum switch of the 'Net'.
setMomentumSwitch<- Sets the momentum switch of the 'Net'.
setMomentumSwitch<--method Sets the momentum switch of the 'Net'.
setNormalizeWeights<- Set whether weight normalization should be performed
setNormalizeWeights<--method Set whether weight normalization should be performed
setNumHidden Sets the number of hidden units
setNumHidden<- Sets the number of hidden units
setNumHidden<--method Sets the number of hidden units
setNumVisible Sets the number of visible units
setNumVisible<- Sets the number of visible units
setNumVisible<--method Sets the number of visible units
setOutput Sets the output of the 'RBM' object
setOutput<- Sets the output of the 'RBM' object
setOutput<--method Sets the output of the 'RBM' object
setPosPhaseData Sets the positive phase data for the training
setPosPhaseData<- Sets the positive phase data for the training
setPosPhaseData<--method Sets the positive phase data for the training
setRBMList<- Sets the list of RBMs
setRBMList<--method Sets the list of RBMs
setStats Adds a list of statistics to the network
setStats<- Adds a list of statistics to the network
setStats<--method Adds a list of statistics to the network
setUpdateFunction Sets the update function of the 'RBM' object
setUpdateFunction<- Sets the update function of the 'RBM' object
setUpdateFunction<--method Sets the update function of the 'RBM' object
setVisibleBiases Sets the biases of the visible units for the 'RBM' object
setVisibleBiases<- Sets the biases of the visible units for the 'RBM' object
setVisibleBiases<--method Sets the biases of the visible units for the 'RBM' object
setVisibleBiasesInc Sets the update value for the biases of the visible units
setVisibleBiasesInc<- Sets the update value for the biases of the visible units
setVisibleBiasesInc<--method Sets the update value for the biases of the visible units
setVisibleUnitFunction Sets the unit function of the visible units
setVisibleUnitFunction<- Sets the unit function of the visible units
setVisibleUnitFunction<--method Sets the unit function of the visible units
setVisibleUnitStates Sets the states of the visible units
setVisibleUnitStates<- Sets the states of the visible units
setVisibleUnitStates<--method Sets the states of the visible units
setWeightCost Sets the weight costs for the training
setWeightCost<- Sets the weight costs for the training
setWeightCost<--method Sets the weight costs for the training
setWeightInc Sets the update values for the weights
setWeightInc<- Sets the update values for the weights
setWeightInc<--method Sets the update values for the weights
setWeights Sets the weights of the 'RBM' object
setWeights<- Sets the weights of the 'RBM' object
setWeights<--method Sets the weights of the 'RBM' object
sigmoidUnit Sigmoid unit function.
sigmoidUnitDerivative Sigmoid unit function with unit derivatives.
sigmUnitFunc Calculates the neuron output with the sigmoid function
sigmUnitFuncSwitch Calculates the neuron output with the sigmoid function
softmaxUnit Softmax unit function.
softmaxUnitDerivative Softmax unit function with unit derivatives.

-- T --

tanSigmoidUnit Continuous Tan-Sigmoid unit function.
tanSigmoidUnitDerivative Continuous Tan-Sigmoid unit function.
trainRBM Trains a 'RBM' with contrastive divergence
trainRBM-method Trains a 'RBM' with contrastive divergence

-- V --

validateDataSet Validate 'DataSet'
validateDataSet-method Validate 'DataSet'