Simulating Longitudinal Data with Causal Inference Applications


[Up] [Top]

Documentation for package ‘simcausal’ version 0.1

Help Pages

simcausal-package Simulate longitudinal data and evaluate causal parameters
A Subsetting/indexing actions defined for DAG object
action Define Actions
add.action Define Actions
add.nodes Adding Nodes to DAG
DAG.empty Initialize an empty DAG object
DF.to.long Convert data from wide format into long format using 'reshape' base function
DF.to.longDT Convert 'data.frame' into long format (faster than 'DF.to.long')
distr.list List all custom distribution functions in 'SimCausal'.
doLTCF Last Timepoint Carried Forward (LTCF)
eval.target Evaluate the Causal Target Parameter via Monte-Carlo Simulation
N Subsetting/indexing DAG nodes
node Create Node Object(s)
node.depr Create Node Object(s) (Deprecated)
parents Show Node Parents Given DAG Object
plotDAG Plot DAG
plotSurvEst (EXPERIMENTAL) Plot Survival
print.DAG Print DAG Object
print.DAG.action Print Action Object
print.DAG.node Print DAG.node Object
rbern Bernoulli node distribution
rcategor Categorical node distribution (factor)
rcategor.int Categorical node distribution (integer)
rconst Constant (degenerate) node distribution
rdistr.template Template for writing custom distributions
set.DAG Create and lock DAG object
set.targetE Node Expectations (E) as the Causal Target Parameter
set.targetMSM MSMs as the Causal Target Parameter
sim Simulate from DAG or list of DAGs (Either Action or Observed DAG(s))
simcausal Simulate longitudinal data and evaluate causal parameters
simfull Simulate Full Data (From Action/Intervention DAG(s))
simobs Simulate Observed Data
vecfun.add Add custom vectorized functions
vecfun.all.print Print names of all vectorized functions
vecfun.print Print names of custom vectorized functions
vecfun.remove Remove custom vectorized functions
vecfun.reset Reset custom vectorized function list