nnetrandom {BiodiversityR}R Documentation

Calculate the NNET Result with the Smallest Value from Various Random Starts

Description

This function provides the best solution from various calls to the nnet feed-forward artificial neural networks function (nnet).

Usage

nnetrandom(formula,data,tries=10,leave.one.out=F,...)

Arguments

formula Formula as passed to nnet.
data Data as passed to nnet.
tries Number of calls to nnet to obtain the best solution.
leave.one.out Calculate leave-one-out predictions.
... Other arguments passed to nnet.

Details

This function makes various calls to nnet. If desired by the user, leave-one-out statistics are provided that report the prediction if one particular sample unit was not used for iterating the networks.

Value

The function returns the same components as nnet, but adds the following components:

range Summary of the observed "values".
tries Number of different attempts to iterate an ANN.
CV Predicted class when not using the respective sample unit for iterating ANN.
succesful Test whether leave-one-out statistics provided the same class as the original class.

Author(s)

Roeland Kindt (World Agroforestry Centre)

Examples

data(faramea)
faramea <- na.omit(faramea)
faramea$presence <- as.numeric(faramea$Faramea.occidentalis > 0)
attach(faramea)
library(nnet)
result <- nnetrandom(presence ~ Elevation, data=faramea, size=2, 
    skip=FALSE, entropy=TRUE, trace=FALSE, maxit=1000, tries=100, 
    leave.one.out=FALSE)
summary(result)
result$fitted.values
result$value
result2 <- nnetrandom(presence ~ Elevation, data=faramea, size=2, 
    skip=FALSE, entropy=TRUE, trace=FALSE, maxit=1000, tries=50, 
    leave.one.out=TRUE)
result2$range
result2$CV
result2$successful

[Package BiodiversityR version 1.2 Index]