cluster.carac {FactoClass}R Documentation

Cluster Characterization by Variables.

Description

It makes the characterization of the classes or cluster considering the variables in tabla. These variables can be quantitative, qualitative or frequencies.

Usage

cluster.carac( tabla , clase , tipo.v="d" , v.lim = 2 )

Arguments

tabla object data.frame with variables of characterization, the variables must be of a single type (quantitative, qualitative or frequencies)
clase vector that determines the partition of the table
tipo.v type of variables: quantitative("continuas"), qualitative ("nominales") or frequencies("frecuencia")
v.lim test value to show the variable or category like characteristic.

Details

For nominal or frecuency variables it compares the percentage of the categories within each class with the global percentage. For continuous variables it compares the average within each class with the general average. Categories and variables are ordered within each class by the test values and it shows only those that pass the threshold v.lim.

Value

Object of class list. It has the characterization of each class or cluster.

Author(s)

Pedro Cesar del Campo pcdelcampon@unal.edu.co, Campo Elias Pardo cepardot@unal.edu.co, Mauricio Sadinle msadinleg@unal.edu.co

References

Lebart, L. and Morineau, A. and Piron, M. (1995) Statisitique exploratoire multidimensionnelle, Paris.

Examples


data(BreedsDogs)
BD.act <- BreedsDogs[-7]  # active variables
BD.function <- subset(BreedsDogs,select=7)   
cluster.carac(BD.act,BD.function,"ca",2.0)  #  nominal variables

data(iris)
iris.act <- Fac.Num(iris)$numeric
clase <- Fac.Num(iris)$factor
cluster.carac(iris.act,clase,"co",2.0)  #  continuous variables

# frequency variables
data(BreedsDogs)
attach(BreedsDogs)
weig<-table(FUNc,WEIG)
weig<-data.frame(weig[,1],weig[,2],weig[,3])
cluster.carac(weig,  row.names(weig), "fr", 2) # frequency variables
detach(BreedsDogs)

[Package FactoClass version 0.7.6 Index]