Av1CondContIC {ROptRegTS} | R Documentation |
Generates an object of class "Av1CondContIC"
;
i.e., an influence curves eta of the form
eta = (A Lambda - a)min(1, b/|A Lambda - a|)
with clipping bound b, centering function a and
standardizing matrix A. Lambda stands for
the L2 derivative of the corresponding L2 differentiable
parametric family which can be created via CallL2Fam
.
Av1CondContIC(name, CallL2Fam = call("L2RegTypeFamily"), Curve = EuclRandVarList(RealRandVariable(Map = list(function(x){x[1]*x[2]}), Domain = EuclideanSpace(dimension = 2))), Risks, Infos, clip = Inf, stand = as.matrix(1), cent = EuclRandVarList(RealRandVariable(Map = list(function(x){numeric(length(x))}), Domain = EuclideanSpace(dimension = 2))), lowerCase = NULL, neighborRadius = 0)
name |
object of class "character" . |
CallL2Fam |
object of class "call" :
creates an object of the underlying L2-differentiable
regression type family. |
Curve |
object of class "EuclRandVarList" |
Risks |
object of class "list" :
list of risks; cf. RiskType-class . |
Infos |
matrix of characters with two columns
named method and message : additional informations. |
clip |
positive real: clipping bound. |
cent |
object of class "EuclRandVarList" : centering function. |
stand |
matrix: standardizing matrix. |
lowerCase |
optional constant for lower case solution. |
neighborRadius |
radius of the corresponding (unconditional) contamination neighborhood. |
Object of class "Av1CondContIC"
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
CondIC-class
, Av1CondContIC-class
IC1 <- Av1CondContIC() IC1