mvf.mor {Reliability} | R Documentation |
mvf.mor
returns the mean value function for the Moranda-Geometric model.
mvf.mor(D, theta, t)
D |
parameter value for D |
theta |
parameter value for theta |
t |
time between failure data |
This function gives the values of the mean value function for the Moranda-Geometric model, this is written as
μ(t) = frac{1}{theta} log{[D theta exp(theta)] t + 1}.
Further there is a verifying if the parameter theta
satisfy the assumptions of
the Moranda-Geometric model. So the paramter theta
have to be larger than zero, in
equation theta > 0.
The mean value function for the Moranda-Geometric model.
Andreas Wittmann andreas_wittmann@gmx.de
J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement, Prediction, Application. McGraw-Hill, 1987.
Michael R. Lyu. Handbook of Software Realibility Engineering. IEEE Computer Society Press, 1996. http://www.cse.cuhk.edu.hk/~lyu/book/reliability/
moranda.geometric
, moranda.geometric.plot
# time between-failure-data from DACS Software Reliability Dataset # homepage, see system code 1. Number of failures is 136. t <- c(3, 30, 113, 81, 115, 9, 2, 20, 20, 15, 138, 50, 77, 24, 108, 88, 670, 120, 26, 114, 325, 55, 242, 68, 422, 180, 10, 1146, 600, 15, 36, 4, 0, 8, 227, 65, 176, 58, 457, 300, 97, 263, 452, 255, 197, 193, 6, 79, 816, 1351, 148, 21, 233, 134, 357, 193, 236, 31, 369, 748, 0, 232, 330, 365, 1222, 543, 10, 16, 529, 379, 44, 129, 810, 290, 300, 529, 281, 160, 828, 1011, 445, 296, 1755, 1064, 1783, 860, 983, 707, 33, 868, 724, 2323, 2930, 1461, 843, 12, 261, 1800, 865, 1435, 30, 143, 108, 0, 3110, 1247, 943, 700, 875, 245, 729, 1897, 447, 386, 446, 122, 990, 948, 1082, 22, 75, 482, 5509, 100, 10, 1071, 371, 790, 6150, 3321, 1045, 648, 5485, 1160, 1864, 4116) mor.par1 <- moranda.geometric(t)$D mor.par2 <- moranda.geometric(t)$theta mvf.mor(mor.par1, mor.par2, t)