drexp {STAR} | R Documentation |
Density, distribution function, quantile function, and random generation for the refractory exponential.
drexp(x, rate = 10, rp = 0.005, log = FALSE) prexp(q, rate = 10, rp = 0.005, lower.tail = TRUE, log.p = FALSE) qrexp(p, rate = 10, rp = 0.005, lower.tail = TRUE, log.p = FALSE) rrexp(n, rate = 10, rp = 0.005)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If length(n) > 1 , the length
is taken to be the number required. |
lower.tail |
logical; if TRUE (default), probabilities are
P[X <= x] , otherwise, P[X > x] . |
log, log.p |
logical; if TRUE , probabilities p are given as log(p). |
rate |
rate parameter (non-negative numeric). |
rp |
refractory period parameter (non-negative numeric). |
The refractory exponential distribution with rate
, r, and refractory
period
, rp, has density:
f(x) = r exp(- r (x-rp))
for x >= rp
.
drexp
gives the density, prexp
gives the
distribution function, qrexp
gives the quantile function
and rrexp
generates random deviates.
Christophe Pouzat christophe.pouzat@gmail.com
Johnson, D. H. and Swami, A. (1983) The transmission of signals by auditory-nerve fiber discharge patterns. J. Acoust. Soc. Am. 74: 493–501.
## Not run: tSeq <- seq(0.001,0.6,0.001) rate.true <- 20 rp.true <- 0.01 Yd <- drexp(tSeq, rate.true, rp.true) Yh <- hrexp(tSeq, rate.true, rp.true) max.Yd <- max(Yd) max.Yh <- max(Yh) Yd <- Yd / max.Yd Yh <- Yh / max.Yh oldpar <- par(mar=c(5,4,4,4)) plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE, xlim=c(0,0.6), ylim=c(0,1)) axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2)) mtext("Density (1/s)", side=2, line=3) axis(1,at=pretty(c(0,0.6))) mtext("Time (s)", side=1, line=3) axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2)) mtext("Hazard (1/s)", side=4, line=3, col=2) mtext("Refractory Exponential Density and Hazard Functions", side=3, line=2,cex=1.5) lines(tSeq,Yd) lines(tSeq,Yh,col=2) par(oldpar) ## End(Not run)