Classification and Regression Training


[Package List] [Top]

Documentation for package ‘caret’ version 4.10

User Guides and Package Vignettes

Read overview or browse directory.

Help Pages

A B C D E F G H K L M N O P R S T V X

-- A --

absorp Fat, Water and Protein Content of Maat Samples
applyProcessing Data Processing on Predictor Variables (Deprecated)
as.matrix.confusionMatrix Save Confusion Table Results
as.table.confusionMatrix Save Confusion Table Results
aucRoc Compute the area under an ROC curve

-- B --

bagEarth Bagged Earth
bagFDA Bagged FDA
bbbDescr Blood Brain Barrier Data
best Selecting tuning Parameters
BloodBrain Blood Brain Barrier Data

-- C --

confusionMatrix Create a confusion matrix
cox2 COX-2 Activity Data
cox2Class COX-2 Activity Data
cox2Descr COX-2 Activity Data
cox2IC50 COX-2 Activity Data
createDataPartition Data Splitting functions
createFolds Data Splitting functions
createGrid Tuning Parameter Grid
createResample Data Splitting functions

-- D --

defaultSummary Calculates performance across resamples
densityplot.train Lattice functions for plotting resampling results
dotPlot Create a dotplot of variable importance values

-- E --

endpoints Fat, Water and Protein Content of Maat Samples
extractPrediction Extract predictions and class probabilities from train objects
extractProb Extract predictions and class probabilities from train objects

-- F --

fattyAcids Fatty acid composition of commercial oils
featurePlot Wrapper for Lattice Plotting of Predictor Variables
filterVarImp Calculation of filter-based variable importance
findCorrelation Determine highly correlated variables
findLinearCombos Determine linear combinations in a matrix
format.bagEarth Format 'bagEarth' objects

-- G --

generateExprVal.method.trimMean Generate Expression Values from Probes

-- H --

histogram.train Lattice functions for plotting resampling results

-- K --

knn3 k-Nearest Neighbour Classification
knn3Train k-Nearest Neighbour Classification

-- L --

logBBB Blood Brain Barrier Data

-- M --

maxDissim Maximum Dissimilarity Sampling
mdrr Multidrug Resistance Reversal (MDRR) Agent Data
mdrrClass Multidrug Resistance Reversal (MDRR) Agent Data
mdrrDescr Multidrug Resistance Reversal (MDRR) Agent Data
minDiss Maximum Dissimilarity Sampling

-- N --

nearZeroVar Identification of near zero variance predictors
negPredValue Calculate sensitivity, specificity and predictive values
normalize.AffyBatch.normalize2Reference Quantile Normalization to a Reference Distribution
normalize2Reference Quantile Normalize Columns of a Matrix Based on a Reference Distribution

-- O --

oil Fatty acid composition of commercial oils
oilType Fatty acid composition of commercial oils
oneSE Selecting tuning Parameters

-- P --

panel.needle Needle Plot Lattice Panel
pcaNNet Neural Networks with a Principal Component Step
plot.train Plot Method for the train Class
plot.varImp.train Plotting variable importance measures
plotClassProbs Plot Predicted Probabilities in Classification Models
plotObsVsPred Plot Observed versus Predicted Results in Regression and Classification Models
plsda Partial Least Squares and Sparse Partial Least Squares Discriminant Analysis
posPredValue Calculate sensitivity, specificity and predictive values
postResample Calculates performance across resamples
pottery Pottery from Pre-Classical Sites in Italy
potteryClass Pottery from Pre-Classical Sites in Italy
predict.bagEarth Predicted values based on bagged Earth and FDA models
predict.bagFDA Predicted values based on bagged Earth and FDA models
predict.knn3 Predictions from k-Nearest Neighbors
predict.list Extract predictions and class probabilities from train objects
predict.pcaNNet Neural Networks with a Principal Component Step
predict.plsda Partial Least Squares and Sparse Partial Least Squares Discriminant Analysis
predict.preProcess Pre-Processing of Predictors
predict.splsda Partial Least Squares and Sparse Partial Least Squares Discriminant Analysis
predict.train Extract predictions and class probabilities from train objects
predictors List predictors used in the model
preProcess Pre-Processing of Predictors
print.bagEarth Bagged Earth
print.bagFDA Bagged FDA
print.confusionMatrix Print method for confusionMatrix
print.train Print Method for the train Class
processData Data Processing on Predictor Variables (Deprecated)

-- R --

resampleHist Plot the resampling distribution of the model statistics
resampleSummary Summary of resampled performance estimates
roc Compute the points for an ROC curve

-- S --

sensitivity Calculate sensitivity, specificity and predictive values
spatialSign Compute the multivariate spatial sign
specificity Calculate sensitivity, specificity and predictive values
splsda Partial Least Squares and Sparse Partial Least Squares Discriminant Analysis
stripplot.train Lattice functions for plotting resampling results
sumDiss Maximum Dissimilarity Sampling
summary.bagEarth Summarize a bagged earth or FDA fit
summary.bagFDA Summarize a bagged earth or FDA fit

-- T --

tecator Fat, Water and Protein Content of Maat Samples
tolerance Selecting tuning Parameters
train Fit Predictive Models over Different Tuning Parameters
trainControl Control parameters for train

-- V --

varImp Calculation of variable importance for regression and classification models

-- X --

xyplot.train Lattice functions for plotting resampling results