coef.fd {fda} | R Documentation |
Obtain the coefficients component from a functional object (functional
data, class fd
, functional parameter, class fdPar
, a
functional smooth, class fdSmooth
, or a Taylor spline
representation, class Taylor
.
## S3 method for class 'fd': coef(object, ...) ## S3 method for class 'fdPar': coef(object, ...) ## S3 method for class 'fdSmooth': coef(object, ...) ## S3 method for class 'Taylor': coef(object, ...) ## S3 method for class 'fd': coefficients(object, ...) ## S3 method for class 'fdPar': coefficients(object, ...) ## S3 method for class 'fdSmooth': coefficients(object, ...) ## S3 method for class 'Taylor': coefficients(object, ...)
object |
An object whose functional coefficients are desired |
... |
other arguments |
Functional representations are evaluated by multiplying a basis
function matrix times a coefficient vector, matrix or 3-dimensional
array. (The basis function matrix contains the basis functions as
columns evaluated at the evalarg
values as rows.)
A numeric vector or array of the coefficients.
coef
fd
fdPar
smooth.basisPar
smooth.basis
## ## coef.fd ## bspl1.1 <- create.bspline.basis(norder=1, breaks=0:1) fd.bspl1.1 <- fd(0, basisobj=bspl1.1) coef(fd.bspl1.1) ## ## coef.fdPar ## rangeval <- c(-3,3) # set up some standard normal data x <- rnorm(50) # make sure values within the range x[x < -3] <- -2.99 x[x > 3] <- 2.99 # set up basis for W(x) basisobj <- create.bspline.basis(rangeval, 11) # set up initial value for Wfdobj Wfd0 <- fd(matrix(0,11,1), basisobj) WfdParobj <- fdPar(Wfd0) coef(WfdParobj) ## ## coef.fdSmooth ## girlGrowthSm <- with(growth, smooth.basisPar(argvals=age, y=hgtf)) coef(girlGrowthSm) ## ## coef.Taylor ## # coming soon.