ST1 {gamlss.dist} | R Documentation |
There are 5 different skew t distributions implemented in GAMLSS.
The Skew t type 3 distribution Jones and Faddy (2003).
The functions dST3
, pST3
, qST3
and rST3
define the density, distribution function,
quantile function and random generation for the skew t distribution type 3.
ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log") dST1(y, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2) ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dST2(y, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2) ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST3(y, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10) ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST4(y, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10) ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dST5(y, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1)
mu.link |
Defines the mu.link , with "identity" link as the default for the mu parameter.
Other links are "1/mu^2" and "log" |
sigma.link |
Defines the sigma.link , with "log" link as the default for the sigma parameter.
Other links are "inverse" and "identity" |
nu.link |
Defines the nu.link , with "identity" link as the default for the nu parameter.
Other links are "1/mu^2" and "log" |
tau.link |
Defines the nu.link , with "log" link as the default for the nu parameter.
Other links are "inverse", "identity" |
y,q |
vector of quantiles |
mu |
vector of mu parameter values |
sigma |
vector of scale parameter values |
nu |
vector of nu parameter values |
tau |
vector of tau parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If length(n) > 1 , the length is
taken to be the number required |
... |
for extra arguments |
The probability density function of the skew t distribution type 1, (ST1
), Azzalini (1986) is defined as
f(y|mu,sigma,nu,tau)=z/sigma *f(z)F(nu*z)
for -Inf<y<Inf and z~TF(0,1) has a t distribution with tau>0 degrees of freedom with tau treated as a continuous parameter.
The probability density function of the skew t distribution type 2, (ST2
), Azzalini and Capitano (2003),
is defined as
f(y|mu,sigma,nu,tau)=z/sigma f_z1(z)F_z2(w)
for -Inf<y<Inf, where z=(y-mu)/sigma, w=nu*sqrt(lambda)*z, lambda=(tau+1)/(tau+z*z) and z_1 ~ TF(01,1,tau) and z_2 ~ TF(0,1,tau+1).
The probability density function of the skew t distribution type q, (ST3
), is defined in Chapter 10 of the
GAMLSS manual.
The probability density function of the skew t distribution type q, (ST4
), is defined in Chapter of the
GAMLSS manual.
The probability density function of the skew t distribution type 5, (ST5
), is defined as
f(y|mu,sigma,nu,tau)=(1/c)*(1+(z/(a+b+z^2)^0.5))^(a+0.5)*(1-(a+b+z^2)^0.5)^(b+0.5)
where c=2^(a+b-1)*(a+b)^0.5 *B(a,b), and Gamma(a)*Gamma(b)/Gamma(a+b) and (y-mu)/sigma and nu=(a-b)/(a*b*(a+b))^0.5 and tau=2/(a+b) for -Inf<y<Inf, -Inf<mu<Inf, σ>0, -Inf<nu<Inf and tau>0.
ST1()
, ST2()
, ST3()
, ST4()
and ST5()
return a gamlss.family
object
which can be used to fit the skew t type 1-5 distribution in the gamlss()
function.
dST1()
, dST2()
, dST3()
, dST4()
and dST5()
give the density functions,
pST1()
, pST2()
, pST3()
, pST4()
and pST5()
give the cumulative distribution functions,
qST1()
, qST2()
, qST3()
, qST4()
and qST5()
give the quantile function, and
rST1()
, rST2()
, rST3()
, rST4()
and rST3()
generates random deviates.
The mean of the ex-Gaussian is mu+nu and the variance is sigma^2+nu^2.
Bob Rigby and Mikis Stasinopoulos
Jones, M.C. and Faddy, M. J. (2003) A skew extension of the t distribution, with applications. Journal of the Royal Statistical Society, Series B, 65, pp 159-174.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
gamlss
, gamlss.family
, BCCG
, GA
, IG
LNO
y<- rST5(200, mu=5, sigma=1, nu=.1) hist(y) m1<-gamlss(y~1, family=ST1) m2<-gamlss(y~1, family=ST2) m3<-gamlss(y~1, family=ST3) m4<-gamlss(y~1, family=ST4) m5<-gamlss(y~1, family=ST5) GAIC(m1,m2,m3,m4,m5) curve(dST5(y=x, mu=30 ,sigma=5,nu=-1), -50, 50, main = "The ST5 density mu=30 ,sigma=5,nu=1")