plot.ergmm {latentnet} | R Documentation |
plot.ergmm
is the plotting method for ergmm
objects. For
latent models, this plots the minimum Kullback-Leibler positions by
default. The maximum likelihood, posterior mean, posterior mode, or a
particular iteration's or configuration's positions
can be used instead, or pie charts of the posterior
probabilities of cluster membership can be shown. See
ergmm
for more information on how to fit these models.
At this time, no plotting non-latent-space model fits is not supported.
## S3 method for class 'ergmm': plot(x, ..., vertex.cex=1, vertex.sides=16*ceiling(sqrt(vertex.cex)), what="mkl", main = NULL, xlab=NULL, ylab=NULL, xlim=NULL,ylim=NULL, object.scale=formals(plot.network.default)$object.scale, pad=formals(plot.network.default)$pad, cluster.col=c("red","green","blue","cyan","magenta","orange","yellow","purple"), vertex.col=NULL, print.formula=TRUE, edge.col=8, pie = FALSE, labels=FALSE, plot.means=TRUE,plot.vars=TRUE,suppress.axes=FALSE, jitter1D=1,curve1D=TRUE,suppress.center=FALSE,density.par=list())
x |
an R object of class ergmm .
See documentation for ergmm . |
what |
Character vector, integer, or an object of class
ergmm.par that specifies
the point estimates to be used. Can be one of the follwoing:
|
pie |
For latent clustering models, each node is drawn as a pie chart representing the probabilities of cluster membership. |
plot.means |
Whether cluster means are plotted for latent cluster
models. The "+" character is used. Defaults to TRUE . |
plot.vars |
Whether circles with radius equal to the square root
of posterior latent or intracluster variance estimates are
plotted. Defaults to TRUE . |
suppress.axes |
Whether axes should not be drawn. Defaults
to FALSE . (Axes are drawn.) |
jitter1D |
For 1D latent space fits, it often helps to jitter the positions for visualization. This option controls the amount of jitter. |
curve1D |
Controls whether the edges in 1D latent space fits are
plotted as curves. Defaults to TRUE . |
suppress.center |
Suppresses the plotting of "+" at the
origin. Defaults to FALSE . |
cluster.col |
A vector of colors used to distinguish clusters in a latent cluster model. |
main,vertex.cex, vertex.col,
xlim,ylim,vertex.sides,object.scale,pad,
edge.col,xlab,ylab |
Arguments passed to
plot.network , whose defaults differ from
those of plot.network . |
labels |
Whether vertex labels should be displayed. Defaults to
FALSE . |
print.formula |
Whether the formula based on which the x
was fitted should be printed under the main title. Defaults to TRUE . |
density.par |
A list of optional parameters for density plots:
|
... |
Other optional arguments passed to the plot.network function. |
Plots the results of an ergmm fit.
More information can be found by looking at the documentation of
ergmm
.
For bipartite networks, the events are marked with a bullet (small black circle) inside the plotting symbol.
If applicable, invisibly returns the vertex positions plotted.
ergmm
,ergmm (object)
, network
, plot.network
, plot
# # Using Sampson's Monk data, lets fit a # simple latent position model # data(sampson) # # Using Sampson's Monk data, lets fit a latent clustering model # samp.fit <- ergmm(samplike ~ latent(d=2, G=3)) # # See if we have convergence in the MCMC mcmc.diagnostics(samp.fit) # # Plot the resulting fit. # plot(samp.fit,labels=TRUE) plot(samp.fit,pie=TRUE) plot(samp.fit,what="pmean") plot(samp.fit,what="cloud") plot(samp.fit,what="density")