lmomray {lmomco} | R Documentation |
This function estimates the L-moments of the Rayleigh distribution given
the parameters (xi and α) from parray
.
The L-moments in terms of the parameters are
λ_1 = xi + αsqrt{π/2} mbox{,}
λ_2 = frac{1}{2} α(sqrt{2} - 1)sqrt{π}mbox{,}
tau_3 = frac{1 - 3/sqrt{2} + 2/sqrt{3}}{1 - 1/sqrt{2}} = 0.1140 mbox{, and}
tau_4 = frac{1 - 6/sqrt{2} + 10/sqrt{3} - 5sqrt{4}}{1 - 1/sqrt{2}} = 0.1054 mbox{.}
lmomray(para)
para |
The parameters of the distribution. |
An R list
is returned.
L1 |
Arithmetic mean. |
L2 |
L-scale—analogous to standard deviation. |
LCV |
coefficient of L-variation—analogous to coe. of variation. |
TAU3 |
The third L-moment ratio or L-skew–analogous to skew. |
TAU4 |
The fourth L-moment ratio or L-kurtosis—analogous to kurtosis. |
TAU5 |
The fifth L-moment ratio. |
L3 |
The third L-moment. |
L4 |
The fourth L-moment. |
L5 |
The fifth L-moment. |
source |
An attribute identifying the computational source of the L-moments: “lmomgum”. |
W.H. Asquith
Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.
lmr <- lmom.ub(c(123,34,4,654,37,78)) lmr lmomray(parray(lmr))