qua.ostat {lmomco}R Documentation

Compute the Quantiles of the Distribution of an Order Statistic

Description

This function computes a specified quantile by nonexceedance probability F for the jth-order statistic of a sample of size n for a given distribution. Let the quantile function (inverse distribution) of the Beta distribution be

mathrm{B}^{-1}(F,j,n-j+1) mbox{,}

and let x(F,Theta) represent the quantile function of the given distribution and Theta represents a vector of distribution parameters. The quantile function of the distribution of the jth-order statistic is

x(mathrm{B}^{-1}(F,j,n-j+1),Theta) mbox{.}

Usage

qua.ostat(f,j,n,para=NULL)

Arguments

f The nonexceedance probability F for the quantile.
j The jth-order statistic x_{1:n} <= x_{2:n} <= ... <= x_{j:n} <= x_{n:n}.
n The sample size.
para A distribution parameter list from a function such as vec2par or lmom2par.

Value

The quantile of the distribution of the jth-order statistic is returned.

Author(s)

W.H. Asquith

References

Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton, Fla.

See Also

lmom2par, vec2par

Examples

gpa <- vec2par(c(100,500,0.5),type='gpa')
n <- 20   # the sample size
j <- 15   # the 15th order statistic
F <- 0.99 # the 99th percentile
theoOstat <- qua.ostat(F,j,n,gpa)

# Let us test this value against a brute force estimate.
Jth <- vector(mode = "numeric")
for(i in seq(1,10000)) {
  Q <- sort(rlmomco(n,gpa))     
  Jth[i] <- Q[j]
}
bruteOstat <- quantile(Jth,F) # estimate by built-in function
theoOstat <- signif(theoOstat,digits=5)
bruteOstat <- signif(bruteOstat,digits=5)
cat(c("Theoretical=",theoOstat,"  Simulated=",bruteOstat,"\n"))

[Package lmomco version 0.96.3 Index]