pdfexp {lmomco}R Documentation

Probability Density Function of the Exponential Distribution

Description

This function computes the probability density of the Exponential distribution given parameters (xi and α) of the distribution computed by parexp. The probability density function of the distribution is

f(x) = α^{-1} e^{(frac{-(x - xi)}{α})}

where f(x) is the probability density for the quantile x, xi is a location parameter and α is a scale parameter.

Usage

pdfexp(x, para)

Arguments

x A real value.
para The parameters from parexp or similar.

Value

Probability density (F) for x.

Author(s)

W.H. Asquith

References

Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, vol. 52, p. 105–124.

Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.

Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.

See Also

cdfexp, quaexp, parexp

Examples

  lmr <- lmom.ub(c(123,34,4,654,37,78))
  expp <- parexp(lmr)
  x <- quaexp(.5,expp)
  pdfexp(x,expp)

[Package lmomco version 0.96.3 Index]