quakap {lmomco} | R Documentation |
This function computes the quantiles of the Kappa distribution given
parameters (xi, α, kappa, and h) of the distribution
computed by parkap
.
The quantile function of the distribution is
x(F) = xi + frac{α}{kappa}(1-{(frac{1-F^h}{h})}^kappa) mbox{,}
where x(F) is the quantile for nonexceedance probability f, xi is a location parameter, α is a scale parameter, kappa is a shape parameter, and h is another shape parameter.
quakap(f, para)
f |
Nonexceedance probability (0 <= F <= 1). |
para |
The parameters from parkap or similar. |
Quantile value for nonexceedance probability F.
W.H. Asquith
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, vol. 52, p. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
lmr <- lmom.ub(c(123,34,4,654,37,78,21,32,231,23)) quakap(0.5,parkap(lmr))