sam {magic}R Documentation

Sparse antimagic squares

Description

Produces an antimagic square of order m using Gray and MacDougall's method.

Usage

sam(m, u, A=NULL, B=A)

Arguments

m Order of the magic square (not “n”: the terminology follows Gray and MacDougall)
u See details section
A,B Start latin squares, with default NULL meaning to use circulant(m)

Details

In Gray's terminology, sam(m,n) produces a SAM(2m,2u+1,0).

The method is not vectorized.

Author(s)

Robin K. S. Hankin

References

I. D. Gray and J. A. MacDougall 2006. Sparse anti-magic squares and vertex-magic labelings of bipartite graphs, Discrete Mathematics, volume 306, pp2878-2892

See Also

magic,is.magic

Examples

sam(6,2)

jj <- matrix(c(
     5, 2, 3, 4, 1,
     3, 5, 4, 1, 2,
     2, 3, 1, 5, 4,
     4, 1, 2, 3, 5, 
     1, 4, 5, 2, 3),5,5)

is.sam(sam(5,2,B=jj))


[Package magic version 1.4-4 Index]