nsga2 {mco}R Documentation

NSGA II MOEA

Description

Multicriterion optimization algorithm

Usage

nsga2(fn, idim, odim, ..., constraints = NULL, cdim = 0, lower.bounds = rep(-Inf, idim), upper.bounds = rep(Inf, idim), popsize = 100, generations = 100, cprob = 0.7, cdist = 5, mprob = 0.2, mdist = 10)

Arguments

fn Function
idim Input dimension
odim Output dimension
... Arguments passed through to 'fn'
constraints Constraint function
cdim Constraint dimension
lower.bounds Lower bound of input
upper.bounds Upper bound of input
popsize Size of population
generations Number of generations to breed. If a vector, then the result will contain the population at each given generation.
cprob Crossing probability
cdist Crossing distribution index
mprob Mutation probability
mdist Mutation distribution index

Value

If generation is an integer, a list describing the final population with components par, value and pareto.optimal. If generations is a vector, a list is returned. The i-th element of the list contains the population after generations[i] generations.

Author(s)

Heike Trautmann trautmann@statistik.uni-dortmund.de, Detlef Steuer steuer@hsu-hamburg.de and Olaf Mersmann olafm@statistik.uni-dortmund.de

References

Deb, K., Pratap, A., and Agarwal, S.. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (8) (2002), 182-197.

Examples

## Binh 1 problem:
binh1 <- function(x) {
  y <- numeric(2)
  y[1] <- crossprod(x, x)
  y[2] <- crossprod(x - 5, x - 5)
  return (y)
}
r1 <- nsga2(binh1, 2, 2,
           generations=150, popsize=100,
           cprob=0.7, cdist=20,
           mprob=0.2, mdist=20,
           lower.bounds=rep(-5, 2),
           upper.bounds=rep(10, 2))
plot(r1)

## VNT problem:
vnt <- function(x) {  
  y <- numeric(3)
  xn <- crossprod(x, x)
  y[1] <- xn/2 + sin(xn);
  y[2] <- (crossprod(c(3, -2), x) + 4)^2/8 + (crossprod(c(1, -1), x) + 1)^2/27 + 15
  y[3] <- 1/(xn + 1) - 1.1*exp(-xn)
  return (y)
}

r2 <- nsga2(vnt, 2, 3,
           generations=150, popsize=100,
           lower.bounds=rep(-3, 2),
           upper.bounds=rep(3, 2))
plot(r2)

[Package mco version 1.0.4 Index]