rRecovery {nFactors} | R Documentation |
The rRecovery function return a verification of the quality of the recovery of the initial correlation or covariance matrix by the factor solution.
rRecovery(R, loadings, communalities=FALSE)
R |
numeric: initial correlation or covariance matrix |
loadings |
numeric: loadings from a factor analysis solution |
communalities |
logical: if TRUE, the correlation between the initail solution and the estimated one will use a correlation of one in the diagonal. If FALSE (default) the diagonal is not used in the computation of this correlation. |
R |
numeric: initial correlation or covariance matrix |
recoveredR |
numeric: recovered estimated correlation or covariance matrix |
difference |
numeric: difference between initial and recovered estimated correlation or covariance matrix |
cor |
numeric: Pearson correlation between initial and recovered estimated correlation or covariance matrix. Computions depend on the logical value of the communalities argument. |
Gilles Raiche, Universite du Quebec a Montreal raiche.gilles@uqam.ca, http://www.er.uqam.ca/nobel/r17165/
componentAxis
,
iterativePrincipalAxis
,
principalAxis
# ....................................................... # Exemple from Kim and Mueller (1978, p. 10) # Population: upper diagonal # Simulated sample: lower diagnonal R <- matrix(c( 1.000, .6008, .4984, .1920, .1959, .3466, .5600, 1.000, .4749, .2196, .1912, .2979, .4800, .4200, 1.000, .2079, .2010, .2445, .2240, .1960, .1680, 1.000, .4334, .3197, .1920, .1680, .1440, .4200, 1.000, .4207, .1600, .1400, .1200, .3500, .3000, 1.000), nrow=6, byrow=TRUE) # Replace upper diagonal by lower diagonal RU <- diagReplace(R, upper=TRUE) nFactors <- 2 loadings <- principalAxis(RU, nFactors=nFactors, communalities="component")$loadings rComponent <- rRecovery(RU,loadings, communalities=FALSE)$cor loadings <- principalAxis(RU, nFactors=nFactors, communalities="maxr")$loadings rMaxr <- rRecovery(RU,loadings, communalities=FALSE)$cor loadings <- principalAxis(RU, nFactors=nFactors, communalities="multiple")$loadings rMultiple <- rRecovery(RU,loadings, communalities=FALSE)$cor round(c(rComponent = rComponent, rmaxr = rMaxr, rMultiple = rMultiple), 3) # .......................................................