quantV {qualV} | R Documentation |
Different methods for calculating the difference between two vectors.
generalME(o, p, ignore = c("raw", "centered", "scaled", "ordered"), geometry = c("real", "logarithmic", "geometric", "ordinal"), measure = c("mad", "var", "sd"), type = c("dissimilarity", "normalized", "similarity", "reference", "formula", "name", "function"), method = NULL) MAE(o, p, type = "dissimilarity") MAPE(o, p, type = "dissimilarity") MSE(o, p, type = "dissimilarity") RMSE(o, p, type = "dissimilarity") CMAE(o, p, type = "dissimilarity") CMSE(o, p, type = "dissimilarity") RCMSE(o, p, type = "dissimilarity") SMAE(o, p, type = "dissimilarity") SMSE(o, p, type = "dissimilarity") RSMSE(o, p, type = "dissimilarity") MALE(o, p, type = "dissimilarity") MAGE(o, p, type = "dissimilarity") RMSLE(o, p, type = "dissimilarity") RMSGE(o, p, type = "dissimilarity") SMALE(o, p, type = "dissimilarity") SMAGE(o, p, type = "dissimilarity") SMSLE(o, p, type = "dissimilarity") RSMSLE(o, p, type = "dissimilarity") RSMSGE(o, p, type = "dissimilarity") MAOE(o, p, type = "dissimilarity") MSOE(o, p, type = "dissimilarity") RMSOE(o, p, type = "dissimilarity")
o |
vector of observed values |
p |
vector of corresponding predicted values |
type |
one of "dissimilarity" , "normalized" ,
"similarity" , "reference" , "formula" , for the dissimilarity
measure, the normalized dissimilarity measure, the similarity
measure, or the formula for the normalized measure. For
generalME it is additionally possible to specify
"function" for getting the corresponding function and
"name" for getting the name of the function.
|
ignore |
specifies which aspects should be ignored: "raw"
compares original values, "centered" removes differences in mean,
"scaled" ignores scaling, "ordered" indicates the use of the
ordinal geometry only. |
geometry |
indicating the geometry to be used for the data and
the output, "real" corresponds to arithmetic differences and means,
"logarithmic" to handling relative data on a logarithmic scale,
"geometric" to geometric means and differences and "ordinal"
to a pure ordinal treatment. |
measure |
indicates how distances should be measured: as mean absolute distances like in MAD, as squared distances like in a variance, or as the root of mean squared distances like in sd. |
method |
optionally the function to be used can specified directly as a function or as a string. |
These comparison criteria are designed for a semiquantitative
comparison of observed values o
with predicted values
p
to validate the performance of the prediction.
The general naming convention follows the grammar scheme
[R][C|S]M[S|A][L|G|O]E
corresponding to
[Root] [Centered | Scaled] Mean [Squared | Absolute]
[Logarithmic, Geometric, Ordinal] Error
The mean errors for squared error measures are based on the number of degrees of freedom of the residuals.
generalME |
selects the best deviance measure according to the description given in the parameters. It has the two additional possibilities of name and function in the type parameter. |
MAE |
mean absolute error 1/n |
MAPE |
mean absolute percentage error |
MSE |
mean squared error |
RMSE |
root mean squared error |
CMAE |
centered mean absolute error |
CMSE |
centered mean squared error |
RCMSE |
root centered mean squared error |
SMAE |
scaled mean absolute error |
SMSE |
scaled mean squared error |
RSMSE |
root scaled mean squared error |
MALE |
mean absolute logarithmic error |
MAGE |
mean absolute geometric error |
MSLE |
mean squared logarithmic error |
MSGE |
mean squared geometric error |
RMSLE |
root mean squared logarithmic error |
SMALE |
scaled mean absolute logarithmic error |
SMAGE |
scaled mean absolute relative error |
SMSLE |
scaled mean squared logarithmic error |
RSMSLE |
root scaled mean squared logarithmic error |
RSMSGE |
root scaled mean squared geometric error |
MAOE |
mean absolute ordinal error |
MSOE |
mean squared ordinal error |
RMSOE |
root mean squared ordinal error |
Mayer, D. G. and Butler, D. G. (1993) Statistical Validation. Ecological Modelling, 68, 21-32.
Jachner, S., K.G. v.d. Boogaart, T. Petzoldt (2007) Statistical methods for the qualitative assessment of dynamic models with time delay (R package qualV), in preparation
data(phyto) obsb <- na.omit(obs[match(sim$t, obs$t), ]) simb <- sim[na.omit(match(obs$t, sim$t)), ] o <- obsb$y p <- simb$y generalME(o, p, ignore = "raw", geometry = "real") MAE(o, p) MAPE(o, p) MSE(o, p) RMSE(o, p) CMAE(o, p) CMSE(o, p) RCMSE(o, p) SMAE(o, p) SMSE(o, p) RSMSE(o, p) MALE(o, p) MAGE(o, p) RMSLE(o, p) RMSGE(o, p) SMALE(o, p) SMAGE(o, p) SMSLE(o, p) RSMSLE(o, p) RSMSGE(o, p) MAOE(o, p) MSOE(o, p) RMSOE(o, p) MAE(o, p) MAPE(o, p) MSE(o, p, type = "s") RMSE(o, p, type = "s") CMAE(o, p, type = "s") CMSE(o, p, type = "s") RCMSE(o, p, type = "s") SMAE(o, p, type = "s") SMSE(o, p, type = "s") RSMSE(o, p, type = "s") MALE(o, p, type = "s") MAGE(o, p, type = "s") RMSLE(o, p, type = "s") RMSGE(o, p, type = "s") SMALE(o, p, type = "s") SMAGE(o, p, type = "s") SMSLE(o, p, type = "s") RSMSLE(o, p, type = "s") RSMSGE(o, p, type = "s") MAOE(o, p, type = "s") MSOE(o, p, type = "s") RMSOE(o, p, type = "s")