sample.data {rconifers}R Documentation

CONIFERS forest growth model sample data

Description

A list object of type sample.data stores all of the basic information about a \list{data.frame} object representing a sample of plants.

Usage

sample.3 <- list( plots=plots, plants=plants, age=3, x0=0.0 )
class(sample.3)  <- "sample.data"

Details

To create the basic data type used in rconifers, you create a list object with the following elements (order is not important):

plots
is a data.frame with the the same elements as plots.
plants
is a data.frame with the the same elements as plants.
age
is an integer value that represents the age of the plants, in years.
x0
is the $x_{0}$ coefficient for the Hann and Wang (1990) mortality model.

Author(s)

Jeff D. Hamann jeff.hamann@forestinformatics.com,
Martin W. Ritchie mritchie@fs.fed.us

References

Ritchie, M.W. 2008. User's Guide and Help System for CONIFERS: A Simulator for Young Conifer Plantations Version 4.10. See http://www.fs.fed.us/psw/programs/ecology_of_western_forests/projects/conifers/

See Also

calc.max.sdi, impute, plants, plots project, rand.seed, rconifers, sample.data, set.species.map, set.variant, smc, summary.sample.data, swo, thin

Examples

library( rconifers )

## set the variant to the SWO variant
set.variant( 0 )

# load the Southwest-Oregon species coefficients into R as a data.frame object
data( swo )

# set the species map 
sp.map <- list(idx=swo$idx,
                 fsp=swo$fsp,
                 code=as.character(swo$code),
                 em=swo$endemic.mort,
                 msdi=swo$max.sdi,
                 b=swo$browse.damage,
                 m=swo$mechanical.damage,
                 gwh=swo$genetic.worth.h,
                 gwd=swo$genetic.worth.d)
set.species.map( sp.map )

## grow the data that was originally swo in the smc variant
# load and display CONIFERS example plots
data( plots )
print( plots )

# load and display CONIFERS example plants
data( plants )
print( plants )

# randomly remove 10 crown.width observations to test
# the impute function
blanks <- sample( 1:nrow( plants ), 10, replace=FALSE )
plants[blanks,]$crown.width <- NA

# create the sample.data list object
sample.3 <- list( plots=plots, plants=plants, age=3, x0=0.0 )
class(sample.3)  <- "sample.data"

# fill in missing values
sample.3.imp <- impute( sample.3 )

# print the maximum stand density index for the current settings
print( calc.max.sdi( sample.3.imp ) )

# print a summary of the sample
print( sample.3.imp )

# now, project the sample forward for 20 years
# with all of the options turned off
sample.23 <- project( sample.3.imp, 
          20, 
          control=list(rand.err=0,rand.seed=0,endemic.mort=0,sdi.mort=0))

## print the projected summaries
print( sample.23 )

## plot the diagnostics from the fit a linear dbh-tht model 
## before thinning
opar <- par( mfcol=c(2,2 ) )
plot( lm( sample.23$plants$tht ~ sample.23$plants$dbh ) )
par( opar )

## thin the stand to capture mortality, redistribute growth, 
## and possibly generate revenue
## Proportional thin for selected tree species, does not remove shrubs
sample.23.t1 <- thin( sample.23, 
             control=list(type=1, target=50.0, target.sp="DF" ) )
print( sample.23.t1 )

## Proportional thin across all tree species
sample.23.t2 <- thin( sample.23, 
             control=list(type=2, target=50.0 ) )
print( sample.23.t2 )

## Thin from below, by dbh, all species
sample.23.t3 <- thin( sample.23, 
             control=list(type=3, target=50.0 ) )
print( sample.23.t3 )

## Thin from below, by dbh for species "PM"
sample.23.t4 <- thin( sample.23, 
             control=list(type=4, target=50.0, target.sp="PM" ) )
print( sample.23.t4 )

## plot the diagnostics from the fit a linear dbh-tht model
## after proportional thinning
opar <- par( mfcol=c(2,2 ) )
plot( lm( sample.23.t2$plants$tht ~ sample.23.t2$plants$dbh ) )
par( opar )

## print the differences, by species
print( sp.sums( sample.23.t4 ) - sp.sums( sample.23 ) )


[Package rconifers version 0.0-9 Index]