summary.sample.data {rconifers} | R Documentation |
These functions create and print summary results for a CONIFERS sample.data object.
## S3 method for class 'sample.data': summary( object, ... )
object |
an object of class sample.data . |
... |
not used by user. |
Applying summary
on an object of class
sample.data
prints out a simple summary of the
sample.data
. A sample.data
object is
the basic data type used for most CONIFERS functions.
Jeff D. Hamann jeff.hamann@forestinformatics.com,
Martin W. Ritchie mritchie@fs.fed.us
Ritchie, M.W. 2008. User's Guide and Help System for CONIFERS: A Simulator for Young Conifer Plantations Version 4.10. See http://www.fs.fed.us/psw/programs/ecology_of_western_forests/projects/conifers/
calc.max.sdi
,
impute
,
plants
,
plots
project
,
rand.seed
,
rconifers
,
sample.data
,
set.species.map
,
set.variant
,
smc
,
summary.sample.data
,
swo
,
thin
library( rconifers ) ## set the variant to the SWO variant set.variant( 0 ) # load the Southwest-Oregon species coefficients into R as a data.frame object data( swo ) # set the species map sp.map <- list(idx=swo$idx, fsp=swo$fsp, code=as.character(swo$code), em=swo$endemic.mort, msdi=swo$max.sdi, b=swo$browse.damage, m=swo$mechanical.damage, gwh=swo$genetic.worth.h, gwd=swo$genetic.worth.d) set.species.map( sp.map ) ## grow the data that was originally swo in the smc variant # load and display CONIFERS example plots data( plots ) print( plots ) # load and display CONIFERS example plants data( plants ) print( plants ) # randomly remove 10 crown.width observations to test # the impute function blanks <- sample( 1:nrow( plants ), 10, replace=FALSE ) plants[blanks,]$crown.width <- NA # create the sample.data list object sample.3 <- list( plots=plots, plants=plants, age=3, x0=0.0 ) class(sample.3) <- "sample.data" # fill in missing values sample.3.imp <- impute( sample.3 ) # print the maximum stand density index for the current settings print( calc.max.sdi( sample.3.imp ) ) # print a summary of the sample print( sample.3.imp ) # now, project the sample forward for 20 years # with all of the options turned off sample.23 <- project( sample.3.imp, 20, control=list(rand.err=0,rand.seed=0,endemic.mort=0,sdi.mort=0)) ## print the projected summaries print( sample.23 ) ## plot the diagnostics from the fit a linear dbh-tht model ## before thinning opar <- par( mfcol=c(2,2 ) ) plot( lm( sample.23$plants$tht ~ sample.23$plants$dbh ) ) par( opar ) ## thin the stand to capture mortality, redistribute growth, ## and possibly generate revenue ## Proportional thin for selected tree species, does not remove shrubs sample.23.t1 <- thin( sample.23, control=list(type=1, target=50.0, target.sp="DF" ) ) print( sample.23.t1 ) ## Proportional thin across all tree species sample.23.t2 <- thin( sample.23, control=list(type=2, target=50.0 ) ) print( sample.23.t2 ) ## Thin from below, by dbh, all species sample.23.t3 <- thin( sample.23, control=list(type=3, target=50.0 ) ) print( sample.23.t3 ) ## Thin from below, by dbh for species "PM" sample.23.t4 <- thin( sample.23, control=list(type=4, target=50.0, target.sp="PM" ) ) print( sample.23.t4 ) ## plot the diagnostics from the fit a linear dbh-tht model ## after proportional thinning opar <- par( mfcol=c(2,2 ) ) plot( lm( sample.23.t2$plants$tht ~ sample.23.t2$plants$dbh ) ) par( opar ) ## print the differences, by species print( sp.sums( sample.23.t4 ) - sp.sums( sample.23 ) )