rconifers {rconifers} | R Documentation |
General information about the rconifers
package.
rconifers
provides an alternative interface to the standard CONIFERS
graphical user interface (GUI). This package enables a user to
define arbitrary silvicultural prescriptions, using standard R
scripts, to predict near term (<20 years) future forest conditions
under a variety of model configurations, management decisions, and
policies. To learn more about the CONIFERS, follow this link
http://www.fs.fed.us/psw/programs/ecology_of_western_forests/projects/conifers/.
Type library(help = rconifers)
to see a list of (public)
rconifers
functions.
Jeff D. Hamann jeff.hamann@forestinformatics.com,
Martin W. Ritchie mritchie@fs.fed.us
Hann, D.W. and C.H. Wang. 1990. Mortality equations for individual trees in southwest Oregon. Oregon State University, Forest Research Laboratory, Corvallis, Oregon. Research Bulletin 67. 17p.
Ritchie, M. and J. Hamann. 2006. Modeling dynamics of competing vegetation in young conifer plantations of northern California and southern Oregon, USA. Canadian Journal of Forest Research 36(10): 2523-2532.
Ritchie, M. and J. Hamann. 2008. Individual-tree height-, diameter- and crown-width increment equations for young Douglas-fir plantations. New Forests 35(2):173-186.
Ritchie, M.W. 2008. User's Guide and Help System for CONIFERS: A Simulator for Young Conifer Plantations Version 4.10. See http://www.fs.fed.us/psw/programs/ecology_of_western_forests/projects/conifers/
Vaughn, Nicholas. 2007. An individual-tree model to predict the annual growth of young stands of Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) in the Pacific northwest. M.S. Thesis, University of Washington. 91p.
calc.max.sdi
,
impute
,
plants
,
plots
project
,
rand.seed
,
rconifers
,
sample.data
,
set.species.map
,
set.variant
,
smc
,
summary.sample.data
,
swo
,
thin
library( rconifers ) ## set the variant to the SWO variant set.variant( 0 ) # load the Southwest-Oregon species coefficients into R as a data.frame object data( swo ) # set the species map sp.map <- list(idx=swo$idx, fsp=swo$fsp, code=as.character(swo$code), em=swo$endemic.mort, msdi=swo$max.sdi, b=swo$browse.damage, m=swo$mechanical.damage, gwh=swo$genetic.worth.h, gwd=swo$genetic.worth.d) set.species.map( sp.map ) ## grow the data that was originally swo in the smc variant # load and display CONIFERS example plots data( plots ) print( plots ) # load and display CONIFERS example plants data( plants ) print( plants ) # randomly remove 10 crown.width observations to test # the impute function blanks <- sample( 1:nrow( plants ), 10, replace=FALSE ) plants[blanks,]$crown.width <- NA # create the sample.data list object sample.3 <- list( plots=plots, plants=plants, age=3, x0=0.0 ) class(sample.3) <- "sample.data" # fill in missing values sample.3.imp <- impute( sample.3 ) # print the maximum stand density index for the current settings print( calc.max.sdi( sample.3.imp ) ) # print a summary of the sample print( sample.3.imp ) # now, project the sample forward for 20 years # with all of the options turned off sample.23 <- project( sample.3.imp, 20, control=list(rand.err=0,rand.seed=0,endemic.mort=0,sdi.mort=0)) ## print the projected summaries print( sample.23 ) ## plot the diagnostics from the fit a linear dbh-tht model ## before thinning opar <- par( mfcol=c(2,2 ) ) plot( lm( sample.23$plants$tht ~ sample.23$plants$dbh ) ) par( opar ) ## thin the stand to capture mortality, redistribute growth, ## and possibly generate revenue ## Proportional thin for selected tree species, does not remove shrubs sample.23.t1 <- thin( sample.23, control=list(type=1, target=50.0, target.sp="DF" ) ) print( sample.23.t1 ) ## Proportional thin across all tree species sample.23.t2 <- thin( sample.23, control=list(type=2, target=50.0 ) ) print( sample.23.t2 ) ## Thin from below, by dbh, all species sample.23.t3 <- thin( sample.23, control=list(type=3, target=50.0 ) ) print( sample.23.t3 ) ## Thin from below, by dbh for species "PM" sample.23.t4 <- thin( sample.23, control=list(type=4, target=50.0, target.sp="PM" ) ) print( sample.23.t4 ) ## plot the diagnostics from the fit a linear dbh-tht model ## after proportional thinning opar <- par( mfcol=c(2,2 ) ) plot( lm( sample.23.t2$plants$tht ~ sample.23.t2$plants$dbh ) ) par( opar ) ## print the differences, by species print( sp.sums( sample.23.t4 ) - sp.sums( sample.23 ) )