rvnorm {rv}R Documentation

Generate Random Variables from a Gaussian (Normal) Sampling Model

Description

Generates a random vector from a Gaussian sampling model.

Usage

  rvnorm(n=1, mean=0, sd=1, var=NULL, precision)

Arguments

n integer: number of variables to generate
mean mean, may be a rv
sd standard deviation; scalar or vector (constant or rv, not matrix)
var variance, can be given instead of sd. Scalar, vector, or matrix.
precision inverse variance or variance matrix, may be given instead of sd or var

Value

A random vector (rv object) of length n.

Note

If any of the arguments are random, the resulting simulations may have non-normal marginal distributions; for example, if an inverse-chi-squared scalar rv var and zero mean is given, the resulting rv will have a t-distribution.

Author(s)

Jouni Kerman jouni@kerman.com

References

Kerman, J. and Gelman, A. (2007). Manipulating and Summarizing Posterior Simulations Using Random Variable Objects. Statistics and Computing 17:3, 235-244.

See also vignette("rv").

Examples

  x <- rvnorm(mean=1:10, sd=1:10) # A vector of length 10.
  Sigma <- diag(1:10)
  y <- rvnorm(mean=1:10, var=Sigma)

[Package rv version 1.0 Index]