plot.dynreg {timereg} | R Documentation |
This function plots the non-parametric cumulative estimates for the additive risk model or the test-processes for the hypothesis of constant effects with re-sampled processes under the null.
## S3 method for class 'dynreg': plot(x,type="eff.smooth",pointwise.ci=1,hw.ci=0, sim.ci=0,robust=0, specific.comps=FALSE,level=0.05,start.time=0, stop.time=0,add.to.plot=FALSE,mains=TRUE,xlab="Time", ylab="Cumulative coefficients",score=FALSE,...)
x |
the output from the "dynreg" function. |
type |
the estimator plotted. Choices "eff.smooth", "ms.mpp", "0.mpp" and "ly.mpp". See the dynreg function for more on this. |
pointwise.ci |
if >1 pointwise confidence intervals are plotted with lty=pointwise.ci |
hw.ci |
if >1 Hall-Wellner confidence bands are plotted with lty=hw.ci. Only 0.95 % bands can be constructed. |
sim.ci |
if >1 simulation based confidence bands are plotted with lty=sim.ci. These confidence bands are robust to non-martingale behaviour. |
robust |
robust standard errors are used to estimate standard error of estimate, otherwise martingale based estimate are used. |
specific.comps |
all components of the model is plotted by default, but a list of components may be specified, for example first and third "c(1,3)". |
level |
gives the significance level. |
start.time |
start of observation period where estimates are plotted. |
stop.time |
end of period where estimates are plotted. Estimates thus plotted from [start.time, max.time]. |
add.to.plot |
to add to an already existing plot. |
mains |
add names of covariates as titles to plots. |
xlab |
label for x-axis. |
ylab |
label for y-axis. |
score |
to plot test processes for test of time-varying effects along with 50 random realization under the null-hypothesis. |
... |
unused arguments - for S3 compatibility |
Thomas Scheike
Martinussen and Scheike, Dynamic Regression Models for Survival Data, Springer (2006).
library(survival) data(csl) indi.m<-rep(1,length(csl$lt)) # Fits time-varying regression model out<-dynreg(prot~treat+prot.prev+sex+age,csl, Surv(lt,rt,indi.m)~+1,start.time=0,max.time=3,id=csl$id, n.sim=500,bandwidth=0.7,meansub=0) par(mfrow=c(2,3)) # plots estimates plot(out) # plots tests-processes for time-varying effects plot(out,score=TRUE)